State Design Pattern [Gamma et al]

This pattern deals with the runtime modification of behavior or state of object. The behavior is basically
a state class in the pattern hierarchy. It advocates creating object-oriented state machines, where the
functionality of an object changes fundamentally according to its state. Usually the conditions that
trigger alteration are business rules that drive the functionality and subject the object to change its
state. Below are the variants of State Pattern:

State Machine Pattern [67]

State Machine pattern improves State and inherits its main idea to encapsulate the state-dependent
behavior in a separate class. While using State Machine it is possible to design state classes
independently. Thus the same state class could be used in several automata. This eliminates the major
disadvantage of State reuse issues. In State transition logic is distributed throughout state classes which
introduces coupling between them. State Machine addresses this issue. It separates transition logic and
the behavior in a particular state. Following is the UML Diagram:

sinterface:
IEventSink
l-eaziCvantiin even! - Evant)
T

Context ainterfaces
Fstate - [AutomatonInterface lAutomatonlnterface Event
[roperatianty 0000 |-—-—————-"—"—"————— —— — —1H|+oparationiy]
[-oparation2() +aparation 2}
. = (]
- castEvent(in evant | Evant) = Fay I
) Y & ~ I N
| %
s 1 Y\
rd 1 A
s 3
- 1 .
v] \
| A
” 1 N\
. \
| %
ConereteState1 : *,
evontl_1 : Ewvent 1 '-.
lewanti_2 : Event I N
b Ewent ! "
< AeventSink : |IEventSink ConcreteState? b
rawtomaton .Iﬂvwma:onlnteﬁace [eventz_1: Event "
[Foperation () lewant2_2 - Event "
Foparation2({) L. - Event "\
¢l FewentSink : | EventSink .
Fautamaton : lAutamatonlnterfacs) -
Faparation ()
Faparation2(} .. Event
=0} -eventSink | |EventSink
) -autamaton ;| l&utomatonl nterdfacs
+oparation 1()
=aperation2(}
+, ..}

DataModel

Figure 1.23 State Machine Pattern

StateMaps [68]
StateMaps is used to determine the actual next state, so that a derived state class may “replace” it with
the next state appropriate for the derived machine. State machine designers can easily construct

complex state machines using object-oriented techniques, while sharing code for actions. This
implementation technique permits the use of complex hierarchies in practice. Following is the UML

Diagram:
state - map -
Hage S = PageState b = StateMap
pagelut{) e pagelut () Mapped(]) o
pageldccesgl) pagelccess () Unmapp,na'ﬂf)

|' A =
[l e

I
state->pagelut{) Mapped Unmapped Mapped:: Instance()
state->pagelccessl) pagelut() o pageluti) Unmapped: : Instance ()

pagelcceds() pagehccess () o
/ —=
map=>Unmapped() map=>Unmappaed()
map=>*Mappad() map=>Mapped{)

Figure 1.24 UML Diagram of StateMaps

Three-Level Finite State Machine [69]

This variant is applied in any context where behavior may be controlled by more than one finite state
machine. Following is the demonstration of three level FSM:

1: Declares the interface
of the behawior

2 Introduces events.
Each event 15 a method

3: Implements the event-dependent
behawvior

Figure 1.25 Three level abstraction of FSM pattern

Reflective State [69] [70]

This variant is applicable when the number of states are relatively large in number. This variant suggests
to separate the application into two levels: the finite state machine (FSM) level and the application level.
The FSM level corresponds to the meta-level of the Reflective architecture, while the application level

corresponds to the base level of the architecture.

MetaController Q 7
config()
createMetaStates()
createMetaTransitions() * | | *
configMetaTransitions() MetaState Next Transitions MetaTransition
configMetaStates() it T ransitions() 1 = |mitNextState()
changeState() mitStare) 4 Next State handleTransition()
handle() handleEvi() 1 *
: | /k
;:Z:ZZRff.';EL‘t?Z? J | | |
MetaConcreteStateA | |MetaConcreteStateB | |[MetaConcrete MetaConcrete
c:2<:ZR_Ei]}"_'.=Z:> ' initState() initState() TransAB TransBA
! handleEvt() handleEvt()
Meta level | ; handle Transition() handleTransition()
Base level |
1 - ;
Context State
service() service()
<::<:Reﬂect§:--::'- /1\ =:j:=:Reﬂect'-::'.=
| |
ConcreteStateA ConcreteStateB
service() service()

Figure 1.25 UML diagram of reflective state pattern

Persistent State Machine [71]

A persistent object is an OO representation of a database entity. An entity may be related to a process
or a work. The Persistent State Pattern has been presented in two forms. In the simple form, where the
pattern is sufficient for managing the state transition logic of a persistent object in a managed
transaction framework. The simple form is sufficient for the most part of the information systems,
where states are related to business processes or workflows. The state of an entity that is part of a
process or workflows usually reflects simply the state of the process or workflow themselves. If the
persistent object needs to behave differently for each different state, the behavioral form of the
Persistent State Pattern must be used. In this case, the basic of the State pattern is added to the simple
Persistent State Pattern, and the result is a pattern that is able to manage different behaviors for
persistent objects in an environment with managed database transactions. Below is the UML structure:

TransactionFactory Transaction
1 o=
el |
T T FaM }(ML-dascriptianBI
1
1
1
1 1 1 1 i
- 1 " L
Service BusinessObject DataAccessOhject B FSM Manager
1 1 1 1
1 | 1
| encapsulates
1 |
Y 1
Entity DataSource

Figure 1.26 Persistent State machine

