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1 Introduction

In parallel FEM, a mesh of elements is partitioned along 
with a set of algebraic equations and distributed to par-
ticipating Processing Elements (PEs). Each PE solves the 
assigned set of equations independently and communi-
cates the solutions to the neighboring PEs. The commu-
nication of solutions takes place due to the dependency of 
the boundary elements of the adjoining partitions. Such 
inter-processor dependencies can be minimized by reduc-
ing the number of boundary elements. Therefore, in addi-
tion to balance the load, a partitioning scheme must also 
curtail the inter-dependency of boundary elements among 
various PEs. However, the two conflicting objectives make 
mesh partitioning an NP-hard problem. During the past few 
decades, several heuristic approaches have been proposed 
to address this problem. In addition to mesh distribution, 
solving equation is also a significant part of a distributed 
FEM system particularly when the size of the coefficient 
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proposed to address this problem. In addition to mesh dis-
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are developed which exploit inherent properties of large 
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matrix is large. A number of efficient equation solving 
techniques are developed which exploit inherent properties 
of large coefficient matrices (for instance, symmetry and 
positive definiteness). In this work, the performance of a 
distributed FEM system on the basis of the mesh partition-
ing approaches and equation solvers is discussed by catego-
rizing mesh partitioning methods, examining implementa-
tion variations in linear and nonlinear solution of equations, 
and exploring the impact of mesh partitioning and an 
equation solver on the performance of a distributed FEM 
system [1–5]. In parallel FEM system, a mesh is equally 
partitioned into sub-meshes that are distributed over mul-
tiple PEs. The data associated to sub-meshes is accessed 
through one of the two parallel approaches—shared-mem-
ory, or distributed-memory architecture. In shared-memory 
architecture, all PEs use a single address space to access 
data from the shared memory. This type of parallel system 
assures that the data is available to all PEs and a soft mech-
anism is in place to avoid racing condition. In distributed-
memory architecture, the data is distributed to PE’s own 
address space. To access data in another memory space, a 
PE uses message passing protocols [1–3]. However, such 
data communication among PEs is regarded as overhead. 
To minimize the communication overhead, the number of 
shared elements on partition boundaries should be reduced. 
For optimal performance, a mesh partitioning algorithm 
has two primary objectives—distributing equal number of 
elements to all partitions, and sharing smaller number of 
boundary elements between partitions. The mesh partition-
ing is generally classified as NP-hard problem and requires 
a heuristic approach for the approximate solution [4, 6]. 
During past few decades, several mesh partitioning heuris-
tics have been proposed [5–13]. Mesh partitioning heuris-
tics can be divided into two main classes [14]:

i) Spatial mesh partitioning, and
ii) Non-spatial mesh partitioning.

Spatial mesh partitioning exploits the underlying geo-
metrical structure of the given mesh. Examples of spatial 
mesh partitioning techniques are orthogonal recursive 
bisection, inertial recursive bisection, circle recursive 
bisection and k–d trees [4, 5, 7, 8]. Non-spatial meshes 
devoid of geometrical structures and the partitioning com-
pletely rely on the adjacency information of the mesh ele-
ments. These partitioning methods use graph partitioning 
techniques. Recursive level-structure bisection, greedy 
approaches and recursive spectral bisection are examples 
of non-spatial mesh partitioning [13–17].

In addition to mesh partitioning, the numerical solu-
tion of algebraic equations is also a crucial aspect of a 
distributed FEM system especially if the coefficient 
matrix is sparse and large. These techniques can be 

broadly classified into two classes—linear and nonlinear 
equation solvers. Linear equation solvers can further be 
categorized as direct and iterative methods. A parallel 
FEM solver is shown in Fig. 1.

2  Mesh Partitioning Techniques

An FEM mesh is constructed by tessellating mesh ele-
ments. If �i represents an ith element, a mesh with n ele-
ments can be defined mathematically as,

For simple geometry, FEMs generate regular meshes 
(uniform element size) that use quadrilateral elements 
in two-dimensional geometry and hexahedral ele-
ments in three-dimensional geometry. For complex 

(1)Ω =

n⋃

i=1

Ωi

Fig. 1  Flow diagram of a parallel system for solving FEM
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geometry, irregular meshes (non-uniform element size) 
are employed that comprises triangular elements in two-
dimensional and tetrahedral in three-dimensional struc-
tures. The regular meshes can be conveniently stored 
in contiguous memory space. In contrast, the irregular 
meshes require special data structure, such as linked 
lists or adjacency matrices, to define nodal connectiv-
ity. Moreover, partitioning of a regular mesh can exploit 
divide-and-conquer techniques. However, due to non-
uniform nodal spacing the irregular meshes cannot be 
partitioned directly. Therefore, the irregular meshes are 
first mapped to a suitable data structure, such as trees or 
graphs, before they are partitioned.

The mesh partitioning can be static or dynamic. If the 
number of elements does not change during execution, the 
mesh partitioning is termed as static mesh partitioning [18, 
19]. In such cases, the mesh partitioning is done only once 
prior to the execution of the program. However, if the num-
ber of elements changes during simulation lifetime, usually 
in irregular meshes, the mesh partitioning is referred to as 
dynamic mesh partitioning [11, 20]. The dynamic mesh 
partitioning has an additional objective of redistributing 
number of mesh elements among the processors at each 
processing step.

Recent study shows that the time response of a parallel 
system can further be improved if the mesh is reordered 
before partitioning [7, 21, 22]. The reason for access time 
improvement is the availability of contiguous nodal data in 
cache memory that improves cache-hit rate. For dynamic 
load balancing, mesh reordering is implemented using 
sampling approach [21–23].

2.1  Spatial Mesh Partitioning

Spatial mesh partitioning approach is based on geometrical 
coordinates that defines the location of vertices in space. 
Many techniques, such as finite element method and finite 
difference method, provide meshes with spatial coordinates 
[14]. Regular mesh partitioning techniques are easier to 
implement, consume less memory and have faster runtime 
[7]. These techniques exploit well established foundations 
of theoretical geometry. Some of the well-known partition-
ing techniques for regular meshes are presented below.

2.1.1  Recursive Orthogonal Bisection

One of the basic geometrical partitioning techniques is 
Recursive Orthogonal Bisection (ROB). In ROB the coor-
dinates are ordered in each dimension and a hyperplane is 
used to bisect the coordinate axis at the mid-point termed 
as the median [4]. From all hyperplanes, a hyperplane is 
selected which cuts minimum number of edges. Figure  2 

shows a schematic diagram of partitioning objects for such 
a case.

2.1.2  Recursive Inertial Bisection

Another geometrical technique is called Recursive Inertial 
Bisection (RIB). RIB algorithm first determines a coordi-
nate axis containing maximum number of vertices. To cut 
minimum number of edges the axis is bisected by placing 
a hyperplane perpendicular to the axis. The ROB and RIB 
use local graph information to determine the location of 
hyperplanes [5].

2.1.3  Recursive Circle Bisection

For more complex partitions, a global Recursive Circle 
Bisection (RCB) is used which uses circles or spheres 
instead of hyperplanes [8]. First, vertices are mapped to the 
surface of a sphere in one dimension higher than the current 
dimension using stereographic projection. Second, a center 
point of the projected vertices is computed. The projected 
points are transformed in such a way that the center point 
coincides with the origin. Third, a greater circle is selected 
randomly that bisects the points into two partitions. Finally, 
the circle is mapped back to the original dimension using 
inverse stereographic projection.

An example of RCB is shown in Fig. 3. The RCB tends 
to produce better partitions when compared to hyperplane-
based techniques. In geometrical graph partitioning, the 
vertices proximity is assumed to correspond to shorter path 
length. However, in many cases, shorter path length may 
not mean true vertices closeness and result poor partition 
quality [14].

2.1.4  Tree-Based Partitioning

Tree structures are commonly employed for mesh partition-
ing [7]. The structures provide a better means for dynamic 
load balancing by migrating extraneous subtrees to other 
processors using sampling approach. A quad tree with 
maximum four children (quadrant) at each node is used to 

Fig. 2  Orthogonal recursive bisection in 2D space
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represent a 2D mesh. An octree contains maximum eight 
children (octant) at each node and is used to describe a 3D 
mesh.

In the study of N-body problem, Warren and Salmon 
used octree for storing particles [24]. The tree is converted 
to a one-dimensional array using Morton space-filling 
curves presented in Fig.  4. One-dimensional array is par-
titioned into P parts before the array is distributed to P 
processors. Each processor has a disjoint set of particles 
that are stored in a local tree. If leaf nodes of a parent node 
reside on adjacent processors, a copy of the leave nodes is 
shared between them to construct a local tree.

Flaherty et  al. describe serial and parallel implementa-
tion of tree-based mesh partitioning [9]. In serial approach, 
the octree associated with a mesh is loaded on a proces-
sor. A depth-first tree traversal algorithm is implemented to 
compute cost at each node. Another traversal is performed 
to partition the tree based on the cost, and the partitioned 
tree is assigned to the processors involved. In parallel tree-
based dynamic partitioning, each processor computes cost 

at each node in local subtree using depth-first traversal 
approach. A global cost structure is obtained by sorting 
the costs associated all subtrees in depth-first order. Such 
cost structure enables each processor to identify position in 
global octree. Starting with global cost each subtree trav-
erses nodes to determine any load imbalance. As soon as 
the cost exceeds a multiple of C∕P (total cost/number of 
processors) the traversal ceases, and the remaining part of 
the subtree is marked for migration.

Flaherty et  al. also used octree partition method for 
the dynamic load balancing [25]. First, cost at each node 
of the octree is determined using depth-first tree traversal 
[25]. An optimal size for each partition can be evaluated 
by dividing the total cost C by the number of processors P. 
Next, the tree is traversed again using truncated depth-first 
traversal starting at the root. A node is included in the parti-
tion if the size of the partition is less than the optimal size. 
If it exceeds the optimal size, the traversing ceases and the 
remaining nodes are added to the next partition. The par-
titions are refined further to remove bumpy boundary sur-
faces and hence reduce communication cost.

For large scale meshes, Tu et al. proposed octree-based 
mesh partitioning [26]. In his algorithm, first the octants 
at each processor are sorted using preorder tree traversal 
(Z-order). To compute partitioning, each processor needs to 
know total number of leaf octants at each processor. Once 
the information is available through reduction operation, 
the processors prepare the data for migration. An internal 
memory manager is used to store octant information locally 
at each processor’s memory module. The memory per-
taining leaf octants that have migrated from a processor is 
reclaimed by the memory manager. Memory is reallocated 
to each newly arrived leaf octant [26].

Mitchell et al. in [27] proposed a dynamic load balanc-
ing algorithm using tree data structure. In sequential imple-
mentation of the algorithm, a quadtree/octree is generated 
from the mesh in such a way that the leaves are weighted 
as 1.0 and internal nodes are weighted as 0 [27]. The tree 
is first traversed using depth-first method to compute sum 
of the weights at each node. This step takes O (N) opera-
tions where N is the total number of nodes. The tree is 
traversed again to partition it into p processors. If the sum 
of the weight at a node is less than N/p, the subtree at the 
node is included in the partition as shown in Fig. 5. Oth-
erwise, the tree is further traversed down. The second tra-
versal of the tree has O (N log p) time complexity. In par-
allel implementation, the tree is traversed twice. First, tree 
traversing pass assigns the nodes with weight sum except 
the leaves which are not part of the global tree. Such leaves 
are called pruning leaves and are assigned zero weight. In 
the second pass, weights of pruning leaves are computed 
by gathering weight information from other processors. At 
this point, each processor has all the information it needs 

Fig. 3  Partition as a result of recursive circle bisection [8]

Fig. 4  Space filling curve using Morton technique [24]
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for partitioning the local subtree. If a processor contains 
extra nodes, it transfers those to other processors that are 
underweight. The time complexity of the parallel algorithm 
is O (t (N)/p).

Hussain et al. [7] reported an improved cache-miss rate 
by reordering mesh dynamically. In serial implementa-
tion of mesh reordering, the centroids of each element are 
computed using greedy approach. A quadtree/octree for 
2D/3D mesh is constructed by employing quicksort using 
centroids of the mesh. Moreover, the quick sort partition-
ing algorithm reorders the leaf nodes and elements based 
on the geometrical indices of the quadtree/octree. Further-
more, the reordered tree is transformed into a one-dimen-
sional array of nodes before the tree is partitioned and dis-
tributed to participating processors. The time complexity 
of the serial implementation is reported as O(N logN). The 
parallel implementation of reordering algorithm uses sam-
ple sorting to reorder and redistribute the mesh. The time 
complexity t of the parallel reordering algorithm is claimed 
as,

where N is the total number of nodes and P is the total 
number of processors. In (2), O

(
N

P

)
 is the time taken to 

compute centroids of sub-meshes. The second term 
O(P logP) denotes time consumed by quicksort algorithm 
for index vector in each partition. The redistribution of 

(2)
t(N) = O

(
N

P

)
+ O(P logP) + O

(
P2

)
+ O

(
N

P
log

N

P

)
,

sub-meshes takes O
(
P2

)
 time. The last term of (2), 

O
(

N

P
log

N

P

)
 is due to the mapping of the 2D mesh to a 

quadtree (octree in case of 3D mesh) for reordering sub-
meshes using quicksort.

2.2  Non‑spatial Mesh Partitioning

Complex irregular meshes are difficult to partition in spa-
tial domain because of their irregular geometrical topol-
ogy. Moreover, irregular meshes also require complex 
data structure to store elements along with neighborhood 
information. General approach of partitioning irregular 
meshes is to transform them into graphs or trees such 
that each element becomes a vertex in the graph or a leaf 
node in the tree. After mapping, graph or tree partition-
ing methods are employed.

A graph G(V ,E) consists of a set of vertices V  and a set 
of edges E. Let P is the number of processors available 
in a cluster for parallel computation. The goal of graph 
partitioning is to distribute V  to P processors such that 
number of vertices assigned to each processor is less than 
or equal to |V|

P
 (i.e., ratio of total number of vertices to 

number of processors) while minimizing edge cut [28, 
29]. For a weighted graph the upper bound of the load 
is expressed in terms of vertices weights. Figure 6 shows 
the distribution of tasks to two processors P0 and P1 as 
a result of graph partitioning technique with minimum 
edge-cut and highlighted with thick edges. The graph 
partitioning is an NP-hard problem. During past few 
decades, several heuristics methods for graph partition-
ing have been developed for an approximate solution in 
polynomial time. Two approaches are popular in graph 
partitioning:

 (i) Single-level approach, and
 (ii) Multilevel approach

These approaches are discussed in the next two sections.

Fig. 5  Partitioning of grid and corresponding tree into two parts [27]

Fig. 6  Graph partitioning for  P0 and  P1 with minimum edge-cut 
shown by thick edges
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2.2.1  Single-Level Graph Partitioning

The structural or combinatorial approach of graph par-
titioning is used for coordinate free graphs [14]. This 
approach uses connectivity and path lengths between 
vertices to determine the partitions. A simple structural 
method is Recursive Level-structure Bisection (RLB) that 
comprises two steps: finding two farthest vertices with 
maximum path length, and employing breadth-first algo-
rithm to compute a subset of vertices that are halfway of 
the maximum distance. The RLB is simple to implement 
with compromised partition quality [14]. Another greedy 
approach proposed by Farhat is similar to RLB but the 
method is non-recursive [16]. The greedy approach com-
putes k partitions, one at a time, by traversing the graph 
in breadth-first manner from a vertex. A similar greedy 
approach is Greedy Graph Growing (GGG) technique 
that selects a vertex randomly. Other vertices are added to 
the selected vertex based on minimum edge-cut criteria 
[17].

Another approach that gained plausibility in graph par-
titioning is Recursive Spectral Bisection (RSB) [30]. In 
this approach, a Laplacian matrix L of |V| × |V| (a vector 
space of V vertices) of the given graph is computed. The 
Laplacian matrix is the difference of the degree matrix and 
the adjacency matrix. Next, an eigenvector x whose eigen-
value is the second smallest is determined. Such eigenvec-
tor is called Fiedler vector that possesses information about 
graph connectivity. The product xTLx gives the number of 
edges to be cut in bisection step. For a perfect partition a 
Fiedler vector is determined that minimizes. xTLx. The Fie-
dler vector is bisected using the median value of the vec-
tor. Bui et  al. proposed an improved version of RSB that 
divides the graph into 4 and 8 sub-graphs [31]. RSB pro-
duces partitions of high quality with minimum edge cuts. 
The only disadvantage of RSB is the expensive computa-
tion of Fiedler vector with computation cost of O (N logN).

2.2.2  Multilevel Graph Partitioning

In another popular graph partitioning technique termed as 
multilevel graph partitioning [7, 30], a graph is contracted 
by combining certain specific nodes. The contracted graph 
is partitioned and expanded back to the original size. For 
larger graphs, multilevel graph partitioning technique 
results in fast partitioning with good quality in terms of 
balanced load, small edge-cut and smooth boundaries [18, 
19]. Three steps involved in multilevel graph partitioning 
are: coarsening the graph through multiple levels, parti-
tioning the coarsest graph, and refining and uncoarsening 
the partitioned graph [32]. The coarsening of the graph is 
based on maximal matching that determines a set of edges 
incident on different vertices [19]. The vertices whose 
edges are maximally matched are collapsed to multi-nodes. 
Karypis et  al. proposed Kernighan–Lin (KL)-based mesh 
refinement technique that exchanges a subset of vertices in 
partitions to further minimize edge-cut [19]. In partitioning 
step, the coarsest graph is bisected using one of the parti-
tioning techniques described in Sect. 2.1. In the uncoarsen-
ing step, the partitioning is refined by relocating some of 
the mesh elements between partitions. The entire process 
is repeated for each partition until the desired number of 
graph partitions is obtained. Figure  7 shows a schematic 
of three steps involved in Multi-Level Recursive Bisection 
(MLRB) graph partitioning [33]. The time complexity of 
MLRB of a graph with number of edges E and partitions k 
is O(|E| log k) [32].

In faster version of multilevel graph partitioning, 
Karypis and Kumar partition the graph into k parts in one 
step without going through k times graph coarsening [18]. 
Figure 8 shows the schematic of the coarsening, partition-
ing and refining steps involved in the multilevel k-way par-
titioning of a graph. The coarsening step is similar to the 
one explained in [19]. Once the coarsest graph is achieved, 
a recursive bisection partitioning is applied to divide the 

Fig. 7  A schematic of multi-
level recursive bisection graph 
partitioning [33]
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graph into k parts. In the refinement step a modified ver-
sion of KL techniques are implemented. In KL technique 
a gain value for all the boundary vertices is computed by 
taking the difference between external degree and inter-
nal degree of the graph. External degree is the sum of all 
weighted edges between the moving vertex in a partition 
and the vertices in other partitions. Similarly, the internal 
degree is the sum of all weighted edges between a moving 
vertex in a partition and the vertices inside the boundary 
of the same partition. The vertices with positive gain and 
the vertices that do not violate the balancing of the parti-
tions are selected for migration. The scanning of the ver-
tices is carried out using greedy KL refinement and global 
KL refinement [19]. In greedy KL refinement, the bound-
ary vertices are traversed randomly and move a vertex with 
positive gain. However, the method of refinement lacks 
hill climbing strategy to avoid local minima, and thus the 
refinement algorithm settles with a suboptimal solution. 
The process of global KL refinement offers hill climbing 
strategy by storing vertices in a priority queue according to 
their gain and move the vertex with highest gain. If the bal-
ancing conditions are not met, the vertex with second high-
est gain is selected for movement. The time complexity of 
multi-level k-way partitioning (MLkP) is reduced to O(|E|) 
by a factor of log k when compared to MLRB.

Karypis et  al. presented parallel implementation of 
coarsening, partitioning and refining of multilevel k-way 
partitioning [10, 13, 23]. Karypis et  al. have used graph 
coloring to produce disjoint sets of vertices to simultane-
ously coarsen and uncoarsen the graph on multiple proces-
sors [10, 23]. The coloring of graph, that is a computation-
ally intensive process, is implemented using Luby’s parallel 
algorithm [34]. In the coarsening step, vertices with the 

same color are matched iteratively. A variable is defined 
for each vertex that stores the index number of the matched 
vertex. Colored graph resolve the issue of selecting various 
vertices for matching. Moreover, in partitioning phase, the 
parts of the coarsest graph are broadcasted using all-to-all 
operation (i.e., sends data from all-to-all processors). Fur-
thermore, each processor partitions the graph using nested 
dissection [35] and greedy partitioning refinement. The 
nested dissection is a divide-and-conquer heuristic for the 
solution of sparse symmetric systems of linear equations 
using graph partitioning. The nested dissection gives worse 
partitioning when compared with serial recursive bisec-
tion, however, it takes less time. The partition quality can 
be improved by mesh refinement in the uncoarsening phase 
[10, 23]. In uncoarsening phase, the vertices in the coarser 
graph are projected to the finer graph followed by partition-
ing refinement. The parallel refinement approach is similar 
to the greedy refinement except the step of moving a group 
of vertices simultaneously [19]. The vertices of the same 
color make an independent set that are considered for the 
movement. Moreover, a subset of these vertices with posi-
tive gain is moved to other partitions. The sum of individ-
ual gain of each vertex is the overall gain of the group of 
vertices moved. However, the movement of group of ver-
tices involves extensive inter-processor communication. To 
minimize the inter-processor communication, only the par-
tition number associated with a vertex is changed without 
physically moving the vertex. The refinement process con-
tinues in a loop for all colors in the graph [10, 13, 23]. The 
load balance constraint is also maintained by monitoring 
the continuously updated partition weight for every move-
ment of the vertices [10, 13, 23].

Karypis and Kumar extended multilevel partitioning 
from single objective/single constraint to multi-constraint 
graph partitioning [20]. Single objective/single constraint 
graph partitioning can be defined as the partitioning of a 
graph where the objective is to minimize edge cut and the 
constraint is to balance the number of vertices [10, 23]. 
Multi-constraint graph partitioning has more than one con-
straint. Karypis et  al. have proposed two approaches for 
multi-constraint multilevel graph partitioning: multilevel 
recursive bisection for partitioning into two sub-graphs, 
and multilevel k-way partitioning for k sub-graphs [20]. In 
coarsening step, two approaches can be taken to collapse 
vertices into multi-nodes: heavy edge heuristic, and bal-
anced edge heuristic. In heavy edge heuristic, the uniform-
ity of weight vector is determined by computing the differ-
ence between maximum and minimum weights of edges. 
In balanced edge approach, the difference is taken with 
respect to the average weight of the vector [19]. In parti-
tioning step, a graph growing bisection technique is used. 
First, a vertex is randomly selected and added into bucket 
A while the remaining vertices are added into bucket B. All 

Fig. 8  Multilevel k-way partition [11]
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vertices in bucket B are moved to m (size of the weight vec-
tor) priority queues based on the maximum weight in the 
weight vector. Finally, depending on the relative order of 
the weights of graph B, a vertex is moved from the top of a 
specific priority queue. The movement of vertices contin-
ues until the weight of the graph A is greater than or equal 
to the half of weight of the original graph. The refinement 
step is implemented differently in recursive bisection and k-
way partitioning. In recursive bisection, two priority queues 
are maintained, one for each bucket for storing gains of 
moving the vertices. Depending on the relative weights of 
two buckets, a vertex is selected from a queue in a partition 
and moved to other partition. Whereas, in k-way partition-
ing, a set V ′ is built that contains the boundary vertices in a 
partition. Another set V ′′ of all vertices in the neighborhood 
is formed which satisfies the minimum edge-cut criteria. A 
set V ′′′ is extracted from V ′′ that fulfills the load balancing 
constraint. From V ′′′ a vertex is moved to the partition that 
gives the minimum edge-cut.

Schloegel et al. proposed a parallel algorithm for static 
multi-constraint multilevel graph partitioning [11]. The 
multi-constraint parallelization is an extension of the paral-
lelization of single constraint graph partitioning presented 
by Karypis et al. [7]. The only difference is the implemen-
tation of the refinement phase during uncoarsening the 
graph. The refinement phase is parallelized in two phases: 
a group of vertices with the same color is moved to other 
partitions with an update of a temporary data structure, and 
the balance constraints are validated after migration of ver-
tices. If the balance constraints are not violated, the vertex 
movement is executed, otherwise, a portion of the moved 
vertices are recalled [20]. The recall may result in load 
imbalance. However, since the number of recalls is small, 
it is unlikely to have load imbalance after partitioning 
phase. The static partitioning can also be used effectively 
for dynamic multi-constraint multilevel graph partition-
ing in conjunction with scratch-remap or locally matched 
scratch-remap. In dynamic load balancing, an additional 
constraint about minimization of data redistribution has 
to be satisfied. Initially, graph-based partitioning is imple-
mented using sequential algorithm in the Metis library 
[18, 19]. The partitioning algorithm is parallelized using 
MPI library on distributed systems [10, 23]. LaSalle et al. 
extended graph partitioning to multithreaded algorithm for 
shared memory systems [6]. The multithreaded algorithms 
use multiple threads for independent computation but share 
the same data resources [36].

The so-called multilevel ant-colony algorithm, which is 
a relatively new metaheuristic search technique for solving 
optimization problems, was applied and studied in [37], 
and the possible parallelization of this algorithm is dis-
cussed in [38]. The multilevel ant-colony algorithm per-
formed well and is better than the classical k-METIS and 

Chaco algorithms; it is comparable with the combined evo-
lutionary/multilevel scheme used in the JOSTLE evolution-
ary algorithm.

2.3  Solving System of Algebraic Equations

In an FEM system, a set of algebraic equations can be 
solved for unknown quantities using inverse of the stiff-
ness matrix. However, taking inverse of a large and sparse 
stiffness matrix is a computationally expensive. Therefore, 
fast numerical techniques are used to determine the inverse 
matrix and solve for the unknown quantities. In the next 
two sections, some well-known linear and nonlinear equa-
tion solving techniques are briefly discussed.

2.3.1  Linear System of Equations

Linear equation solving techniques can be classified as 
direct method and iterative method. The direct methods 
directly compute inverse of the stiffness matrix. These 
methods, however, become very expensive for large and 
sparse matrices. On the other hand, the iterative methods 
evaluate an approximate solution by updating the value of 
unknowns iteratively.

Direct approach

 (i) Most commonly used direct method is called the 
Gaussian elimination method [39]. In Gaussian elim-
ination method, the matrix is decomposed into upper 
and lower triangles using famous LU factorization 
[39].

 (ii) The matrix decomposition can be made more effi-
cient for some special matrices, such as, banded 
matrices or matrices that yield to Cholesky decompo-
sition. The upper triangle is solved by backward sub-
stitution of the computed coefficients. The drawback 
of Cholesky method is the propagation of round off 
errors originated from floating point operations [39].

 (iii) The Gauss–Jordan elimination is a simple modifica-
tion of the Gauss-elimination method that converts 
the coefficient matrix into reduced row echelon form 
[39]. The Gauss–Jordan method produces more accu-
rate results in solving a system of linear equations 
and computing the inverse of the matrix simultane-
ously.

Iterative approach

(i) One of the popular iterative methods is Jacobi 
method. The Jacobi method starts with an initial guess 
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to the solution and is solved iteratively until the solu-
tion of desired precision is reached [40].

(ii) A more efficient iterative scheme is referred to as 
Gauss–Seidel iteration method [40]. In this method, 
the coefficient matrix is decomposed into lower and 
upper triangles before a variable is approximated. 
The decomposition matrix allows the Gauss–Seidel 
method to converge faster than the Gauss elimination 
method. However, the method is less stable and may 
oscillate indefinitely around the correct solution if the 
coefficient matrix is not strictly diagonally dominant 
[40]. Therefore, there is a trade-off between speed of 
convergence and the stability of the method [40].

(iii) Richardson method is another example of iterative 
method [1, 3]. In this method, � is a constant multi-
plier and can be written as:

where I is an identity matrix. (5) leads to computation 
of parameter u in iterations as:

(iv) An iterative algorithm termed as conjugate gradient 
method is used for linear system of equations com-
prising symmetric positive-definite matrix. The con-
jugate gradient method is mostly employed for large 
sparse matrices that frequently result in the numerical 
(approximate) solution of BVPs [40, 41]. Suppose bn 
are n mutually conjugate vectors with respect to Ke 
forming a basis of ℝn in n dimensional real space, the 
solution to (16) can be expressed as:

 

 If Ke in (16) is symmetric and positive definite 
then the coefficients �i can be computed as follows:

 The quantity ⟨., .⟩ defines the inner product between 
two arguments. The first basis vector b0 is the negative 
of the gradient of f at an initial solution u0:

 The second basis vector will be conjugate to the above 
gradient vector. Similarly, each new basis that is con-
jugate to all the previously gradient vectors is com-
puted iteratively.

(3)�Keui = �f e,

(4)ui +
(
�Ke − I

)
ui = �f e,

(5)ui =
(
I − �Ke

)
ui + �f e.

(6)ui+1 =
(
I − �Ke

)
ui + �f e.

(7)u∗ =

n∑

i=1

�ibi.

(8)�i =
⟨bi, f⟩
⟨bi, biK⟩

.

(9)b0 = f − Ku0.

(v) The conjugate gradient method gives exact solutions. 
However, the conjugate method is unstable and the 
algorithm may oscillate around the exact solution [42, 
43]. To stabilize the solution, a precondition matrix M, 
that is symmetric positive-definite and fixed, is used to 
compute the gradient vector. Multiplication of K with 
M results in the smaller condition number �(MK). The 
preconditioning leads to a well-known method called 
preconditioned conjugate gradient (PCG) to solve 
BVPs [42–45]. Mathematically, using (9), the PCG 
can be defined as follows:

2.3.2  Nonlinear System of Equations

Many physical systems, such as simulation of car crash, 
fluid–structure interaction and underground fluid flow, are 
inherently nonlinear. The nonlinear FEM systems result in 
nonlinear system of equations that are solved numerically 
[7]. The system of equations involving nonlinear functions, 
such as trigonometric, hyperbolic, exponential or logarith-
mic functions, is called a system of nonlinear equations. 
The nonlinear equations are generally solved using numeri-
cal techniques to produce inexact solution. The prime 
objective of these methods is to converge to exact solution 
in a smaller number of iterations with predefined error tol-
erance � as discussed below:

 (i) The most popular method for solving nonlinear equa-
tions is Newtorn–Raphson method. Suppose the non-
linear equation is presented as:

The solution of the above equation can be defined as:

The Newton–Raphson method iteratively computes 
improved solution of Eq.  (12). The method requires 
initialization with one input value. If i is the iteration 
number, the general formula for iterative procedure 
for computing solution is given as:

Finally xi+1 is tested for convergence if the following 
condition is satisfied: 

Newton–Raphson method converges quickly in rela-
tively fewer numbers of iterations [46]. However, to 

(10)b0 = M−1(f − Ku0).

(11)f (x) = 0

(12)
|||f
(
xR
)||| < 𝜀

(13)xi+1 = xi −
f (xi)

f
�
(xi)

.

(14)
|||f
(
xi+1

)||| < 𝜀.
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use Newton–Raphson method one needs to compute 
the derivative of the given function.

 (ii) The secant method is similar to Newton–Raphson 
method except the derivative of the given equation is 
approximated as: 

 Using Eq. (16) the secant method can be written as: 

 Equation (16) shows that, in contrast to Newton–
Raphson method the secant method requires two ini-
tial values as input to compute the current value of 
the solution.

 (iii) The Richardson method discussed above can also be 
used for the solution of nonlinear equations if � is 
treated as a variable. Equation (6) converges if norm 
of I − �K is less than one. For maximum and mini-
mum eigenvalues of K, �n and �1 respectively, the 
value of � is computed as: 

 (iv) In multi-physics, BVPs such as a moving structure 
in a fluid, the governing equations are first trans-
formed into constrained variation problem. The prob-
lem is converted into series of unconstrained prob-
lems using Lagrange multiplier technique [47]. For 
instance, in an optimization problem, an objective 
function f (x, y) is needed to be maximized subject 
to the constraint g(x, y) = c for some constant c. The 
Lagrangian formulation can be written as:

where parameter � is called Lagrange multiplier. A 
penalty term � is added to Lagrangian formulation to 
retain the size of the system to that of primal vari-
ables as:

The resulting expression in Eq.  (19) is commonly 
referred to as augmented Lagrangian formulation 
[48, 49]. The augmented Lagrangian formulation can 

(15)f
�(
xi
)
≈

f
(
xi
)
− f (xi−1)

xi − xi−1

(16)xi+1 = xi −
f
(
xi
)

f
(
xi
)
− f

(
xi−1

) ⋅ (xi − xi−1).

(17)� =
2

�n + �1
.

(18)min�(x, y, �) = f (x, y) + �.(g(x, y) − c)

(19)
min�(x, y, �,�) = f (x, y) + �.(g(x, y) − c)

+ �.
(
(g(x, y) − c)2

)
.

be extended to multiple constraints, where � and � 
for each constraint have to be evaluated. If the (19) 
involves BVPs, it can be mapped to a discrete mesh 
and solved numerically using FEM.

2.4  Discussion

Various mesh partitioning techniques and a number of 
equation solving techniques for a distributed FEM system 
are reviewed. The following discussion compares and high-
lights some of the intrinsic features of mesh partitioning 
methods and equation solving techniques that are crucial 
for the performance of a distributed FEM system.

2.4.1  Static Versus Dynamic Mesh Partitioning

If the number of FEM tasks to be distributed is fixed or 
change in a predictable fashion, the distribution can be done 
statically. A static mesh partitioning is a single-objective 
and single-constraint problem. The objective of the parti-
tioning is to minimize the edge-cut while constraining the 
load balance. Such mesh partitioning is carried out prior to 
computations of mesh elements. Therefore, the partitioning 
can be done offline using sophisticated techniques that pro-
duce better partitioning quality [50]. If the processing and 
memory requirements for a mesh computation are not too 
high, the static mesh partitioning can even be performed on 
a single processor.

The dynamic task distribution is used for load balancing 
if FEM workload on participating processors varies during 
the execution time. For instance, in adaptive mesh parti-
tioning, the number of elements on each processor is modi-
fied in runtime. Such runtime changes result load imbal-
ance and require redistribution of mesh elements among 
PEs. The redistribution of mesh elements induces commu-
nication overhead. For an efficient parallel system, the com-
munication overhead must be kept minimum. Therefore, for 
dynamic mesh partitioning, time efficient algorithms are 
crucial to avoid deterioration of overall performance [50]. 
It is noteworthy that in dynamic mesh partitioning, the data 
is already distributed. Accordingly, the best strategy is to 
figure out the candidate elements that need to be relocated 
rather than gathering the entire mesh for repartitioning 
from scratch.

2.4.2  Spatial Versus Non-spatial Mesh Partitioning

A spatial FEM mesh is represented by a spatial grid with 
each node separated by a fixed distance [14]. The nodes 
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of the grid are described using (2D or 3D) spatial coordi-
nates. The knowledge of spatial coordinates aids in defin-
ing global relationship between elements. In spatial mesh, 
the proximity of elements is determined by computing, for 
instance, Euclidean distance [14]. In most cases, spatial 
distances truly represent the relationship between mesh ele-
ments. However, in some cases, the path lengths between 
elements vary wildly from the computed spatial distances. 
Due to such discrepancies, the resulting partitioning from 
spatial methods may have quality issues [14]. Spatial 
meshes can also be transformed into graphs for employing 
graph theoretic partitioning techniques.

Non-spatial meshes cannot be distributed directly to 
a multiprocessor system due to their irregular geometry. 
Such meshes are initially mapped to some suitable struc-
tures, such as, graphs before partitioning. The meshes 
represented by graphs can be distributed using graph-the-
oretic partitioning algorithms. For instance, graph walking 
algorithm is a local-based graph traversing approach that 
allows access to the neighboring nodes. In such cases, sev-
eral greedy techniques, such as greedy graph growing or 
graph growing bisection, are available to determine optimal 
graph partitioning. However, a greedy approach lacks the 
global view of a graph and possesses a potential tendency 
to fall into local minima [14]. To appease such problems, 
hill climbing methods may be incorporated into greedy 
techniques.

2.4.3  Graph Versus Tree Data Structures

Graph data structures are frequently used to represent spa-
tial and non-spatial FEM meshes [19]. The graph represen-
tation gives meshes an opportunity to use well established 
graph-theoretic approaches for mesh partitioning. The par-
titioning of spatial meshes using graphs exploits geometri-
cal topology of the meshes for improving partition quality 
[14]. Non-spatial graphs rely on neighborhood connectivity 
of the nodes and use greedy approaches for mesh partition-
ing [19]. Graphs can be used in static as well as in dynamic 
mesh partitioning [11].

Tree data structures are commonly employed by spatial 
meshes in dynamic mesh partitioning [7, 9, 22–27]. Two- 
and three-dimensional FEM meshes can be conveniently 
mapped into quadtree and octree respectively. In tree-based 
partitioning, the tree is transformed into a 1-D array using 
space-filling curves, such as, Morton or Peano–Hilbert 
curves [51]. The space-filling curves ensure that the nearby 
nodes are proximally near in the 1-D array. The resulting 
1-D array is subsequently bisected to achieve balanced 
mesh partitions. In tree-based partitioning approaches, the 

load imbalance can also be computed using breadth-first or 
depth-first traversal [9, 25, 27].

2.4.4  Single Level Versus Multilevel Partitioning

For smaller meshes with uniformly distributed elements, 
the single level partitioning works more efficiently. In FEM 
mesh partitioning, there is a tradeoff between quality and 
complexity of mesh partitioning algorithm. Some mesh 
partitioning algorithms are less complex, such as recursive 
bisection or inertial bisection, however, the quality of par-
titioning is compromised. Alternatively, more complex par-
titioning algorithms, such as, recursive spectral bisection or 
refinement-based partitioning, generally produce partitions 
of optimum quality [14].

For large and non-spatial meshes, the multilevel par-
titioning algorithms have proved to be faster with better 
partitioning quality [18, 19]. In multilevel partitioning, 
the coarsening and the uncoarsening steps take much less 
time than the partitioning of a mesh. Therefore, the multi-
level partitioning is more economical and better than sin-
gle-level partitioning if the size of the mesh is large [19]. 
Additionally, the coarsest mesh in multilevel partitioning 
is smaller compared to that of original one. Consequently, 
small meshes can afford more sophisticated mesh parti-
tioning algorithms to improve quality [19]. Moreover, the 
refinement step in uncoarsening phase also aids partition-
ing quality.

2.4.5  Serial Versus Parallel Partitioning

The mesh partitioning can be implemented offline in serial 
fashion using a single processor especially if the mesh size 
does not change [50]. Such mesh partitioning provides 
flexibility to employ complex and expensive algorithms to 
produce high quality partitioning. The partitioned mesh is 
subsequently distributed to processors for distributed FEM 
computations. Many of the algorithms developed for mesh 
partitioning are serial in nature. The advantages of serial 
approaches include no parallel computing overheads, such 
as, mesh partitioning and inter-processor communications 
among partitions. Small FEM meshes containing few thou-
sand of elements do not generally require large memory 
and computing resources. Even if there is a need to dis-
tribute the mesh over multiple processors, the partitioning 
of the mesh can be accomplished on a standalone machine 
either for static or dynamic meshes. Complex techniques 
for single-level partitioning, such as refine-based greedy 
approaches, can be employed for small meshes to achieve 
high partitioning quality.
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In parallel implementation of FEM, some researchers 
assert that the available computing resources should also 
be utilized for partitioning of meshes [10, 29, 23]. Karypis 
et al. and Schloegel et al. proposed parallel multilevel mesh 
partitioning techniques to parallelize coarsening, parti-
tioning and uncoarsening of a mesh [10, 11, 23]. Also, in 
dynamic mesh partitioning, a mesh is already in distributed 
form on multiple processors. The dynamic mesh partition-
ing could be very costly if the mesh is gathered on a single 
processor and repartitioned repeatedly. Additionally, the 
number of elements to be migrated is small [7]. Therefore, 
it is wise to implement parallel dynamic mesh partition-
ing scheme so that the redistribution of elements can be 
expedited. The large meshes pose a challenge in FEM solu-
tion due to memory and processing power constraints. The 
natural choice for solving large meshes is to distribute the 
computing tasks over multiple processors. To take advan-
tage of a parallel system, the partitioning algorithm should 
utilize the available computational power efficiently. The 
parallel algorithm implemented by Karypis et al. used less 
number of processors as it progresses in graph coarsening 
step [10]. In contrast, the parallel algorithm that Hussain 
et al. proposed utilizes all available processors in partition-
ing a mesh [7].

2.4.6  Single-objective Versus Multi-objective Partitioning

The static mesh partitioning can be formulated as single-
objective, single-constraint optimization problem with 

an objective to minimize the edge cut under the con-
straint of balanced partitioning [11]. In such problems, 
the physical properties of the domain do not change with 
time or space. There are many real life problems, such 
as, contact mechanics or crash simulation that include 
multi-phase and (multi-physics) domains. The FEM 
solution of such problems requires adaptive meshes 
which can be formulated as multi-objective, multi-
constraint optimization problems. However, solving 
multi-objective, multi-constraint problems is generally 
challenging. An optimal solution is usually difficult to 
find due to the larger solution space, the large number 
of local optima, and the presence of often conflicting 
solutions.

2.4.7  Local Versus Global Partitioning

In greedy graph partitioning approaches, a partition tech-
nique uses local information at the neighboring nodes to 
partition a mesh. Such approaches devoid information 
about the global structure of the mesh. The greedy par-
titioning approaches are fast but have a potential to fall 
into local optima. The global information of the complete 
graph can be obtained from eigenvalues and eigenvectors 
of Laplacian matrix of the graph. The partition based on 
global information tends to be more accurate, however, 
requires more computations. For large FEM meshes, global 
partitioning techniques may be employed to partition the 
coarsest graph in multilevel graph partitioning.

Table 1  Comparison of Hussain et al. and Metis reordering algorithms using OpenMP

Procs Execution time (Hussain et al.)

EL = 15,625 EL = 12,167 EL = 10,648 EL = 8000 EL = 1000

 1 2.94 2.21 1.94 1.42 0.17
 4 0.62 0.56 0.50 0.37 0.04
 8 0.38 0.29 0.25 0.19 0.03
 12 0.28 0.21 0.18 0.14 0.02
 16 0.23 0.17 0.15 0.12 0.02

Procs Execution time (Metis)

EL = 15,625 EL = 12,167 EL = 10,648 EL = 8000 EL = 1000

 1 15.60 12.00 10.47 7.88 0.98
 4 4.26 3.33 2.84 2.31 0.30
 8 2.43 1.92 1.54 1.24 0.19
 12 1.72 1.46 1.14 0.90 0.16
 16 1.45 1.04 1.03 0.76 0.15
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2.4.8  Computation Versus Communication

The distributed FEM computing provides large computing 
and storage resources. The parallel system gives an edge 
to the computation of complex scientific and engineering 
problems. Moreover, the parallel system with distributed 
memory also facilitates storage for problems with huge 
amount of data [36]. The parallel computation of distrib-
uted tasks may require exchange of information between 
processors. Any form of communications between proces-
sors is regarded overhead, and must be kept minimum to 
expedite the overall parallel processing [19]. Therefore, the 
main objective of the mesh partitioning techniques should 
be to minimize the inter-processor communications for effi-
ciency and performance of a distributed FEM system.

Table  1 shows comparison of the two mesh reorder-
ing algorithms for different meshes using OpenMP [52]. 
Table 2 summarizes the time complexities of various mesh 
partitioning algorithms on serial and parallel architectures 
(see Sect. 2.4.9).

2.4.9  Summary of Mesh Partitioning Techniques

The discussion so far deduces that there is no universal 
mesh partitioning method that works effectively and effi-
ciently for all types of FEM meshes. Moreover, the mesh 
partitioning is highly application dependent, and there 
exists a trade-off between quality of partitioning (as a result 
of complex techniques) and partitioning speed [19, 30, 50]. 
In Table 3, a summary of the advantages and disadvantages 
of the mesh partitioning techniques is presented.

2.4.10  Equation Solvers Selection

The equation solvers take significant portion of FEM com-
putations due to enormous size of coefficient matrices. 

Therefore, a judicious selection of a solution is recom-
mended. Often, the selection of an equation solver is based 
on the size and physics (linear or nonlinear) of the prob-
lem on hand [53]. Other selection criteria for the equation 
solvers are symmetry, sparseness and of the coefficient 
matrix. In addition, a solver should be robust, general in 
scope, efficient, automated, scalable and predictable [53]. 
Direct methods used in equation solvers are robust but are 
computationally expensive. In contrast, iterative methods 
gradually converge to the optimal result based on speci-
fied tolerance. The convergence tolerance should be chosen 
greater than the condition number of the coefficient matrix. 
If diagonal values of the coefficient matrix are close to zero 
(as is the case for sparse and ill-conditioned matrices), the 
computations become unstable. To ensure stability and 
accuracy, an equation solver should use ingrained proper-
ties, such as, condition number, symmetry and positive 
definiteness, of the coefficient matrix. The diagonally dom-
inant sparse coefficient matrices also minimize communi-
cations between processors. A matrix can be converted into 
a diagonally dominant matrix using a pivoting scheme [53].

2.4.11  Equation Solvers’ Properties

In FEM, for steady state problems, the BVPs are trans-
formed into a large system of algebraic equations. For sta-
ble systems, the coefficient matrix is symmetric and posi-
tive definite. Such properties of the matrix must be taken 
into account while solving the equations numerically to 
improve accuracy, stability and speed. The unstable sta-
ble systems results in ill-conditioned or singular matrices 
that can be solved using a suitable matrix decomposi-
tion method. Therefore, the type of solver used in FEM 
may also affect the overall performance of the system. In 
Table 4, a summssary of properties of equation solvers is 
presented.

Table 2  Time complexities of 
mesh partitioning techniques

Mesh partitioning technique Time complexity

Recursive orthogonal bisection [4] t(N) = O(d N logN)

Fiedler vector creation in recursive spectral bisection 
[30]

O(N logN)

Serial multilevel recursive bisection [32] O(|E| log k)
Parallel multilevel recursive bisection [10] t(N) = O

(
|E|
P
log k

)

Serial multilevel k-way partitioning [18] O(|E|)
Parallel multilevel k-way Partitioning [10] t(N) = O

(
N

P

)
+ O(P logN)

Serial mesh reordering [7] t(N) = O(N logN)

Parallel mesh reordering [7] t(N) = O
(

N

P

)
+ O(P logP) + O

(
P2

)
+ O

(
N

P
log

N

P

)
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Table 3  Summary of mesh partitioning techniques

Mesh partitioning technique Advantages Disadvantages

Spatial mesh partitioning Exploits geometry to capture global placement of 
vertices using spatial coordinates [14]

Geometrical distance between vertices may not be 
true descriptor of vertices proximity [14]

Non-spatial mesh partitioning Uses neighborhood of vertices for local con-
nectivity [14]

Employ greedy approach for partitioning [16]

Blind to global placement of vertices [14]
Vulnerable to local optima [16]

Single-level mesh partitioning Simple to implement
Fast for small meshes [16]

Slow for large meshes
Poor partitioning quality for large meshes [7]

Multilevel mesh partitioning Efficient partitioning for large meshes [7]
The refinement phase improves quality of parti-

tioning [19]

Complex in implementation due to coarsening and 
uncoarsening phases [7]

Partitioning of the coarsest mesh compromises 
quality [7]

Partitioning using optimization methods Multilevel ant-colony optimization works better 
than k-metis [83]

Fundamental issue with optimization methods is 
falling into local minima

Graph-based mesh partitioning Complex irregular FEM meshes are mapped to 
graphs [28]

Employs well-developed graph theoretic 
approaches for traversing and searching [29]

Uses only vertices connectivity for partitioning 
[14]

Could be costly in dynamic mesh partitioning [24]

Tree-based mesh partitioning Tree data structure assist in partitioning meshes 
[7]

Commonly employed in dynamic mesh partition-
ing and mesh reordering [7]

Mapping of a mesh to a tree is time consuming [7]

Serial mesh partitioning Small meshes can be partitioned sequentially on 
a single machine [30]

No parallel overheads
Simple in coding

Not suitable for large meshes [11]
Wastes computational and storage resources

Parallel mesh partitioning Utilizes available processing power and memory
Appropriate for large graphs for fast partitioning 

[11]
Employs well-known parallel libraries for shared 

and distributed memory architectures [36]

Parallel overheads due to distribution of tasks [11]
Complex implementation [11]
Load balancing in an evolving distributed mesh is 

complicated [11]

Single-objective mesh partitioning Most mesh partitioning is single objective and 
single constraint [7]

Easy to find optimal solution [30]
Takes advantage of well-established optimization 

theory [20]

Not suitable for multi-objective and multi-con-
straint problems [20]

Multi-objective mesh partitioning Complex problems can be mapped to multi-
objective, multi-constraint problems [20]

Helps in finding an optimal solution in large and 
difficult solution space [20]

Implementation is complex
Highly potential for falling into local optima due to 

large and multi-facet solution set [20]

Simple mesh partitioning Easy to program and modify
Easy to debug
Less time consuming
Very suitable for dynamic mesh partitioning [16]

May compromise quality of partitioning [16]

Complex mesh partitioning Produces good partitioning results [17] Complicated and requires longer time for execution 
[17]

Hard to code and debug [14]
Mesh reordering Improves performance for distributed irregular 

meshes by increasing cache hit rate [7]
Time complexity is comparable to multilevel 

mesh partitioning [7]

May not give significant results for regular meshes 
[7]
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Table 4  Properties of numerical equation solvers

Type of equations Approach Methods Properties

Linear Direct approach for dense matrices [39] Gaussian elimination—LU factoriza-
tion Requires 

2

3
n3 flops in transforming matrix 

into echelon form
Gaussian elimination—Cholesky 

decomposition Requires 
n3

3  flops and exploits symmetric 
positive definite property of the stiff-
ness matrix

Gauss–Jordan method
Requires 

4

3
n3 flops, twice as many as 

Gaussian elimination due to transfor-
mation of stiffness matrix into reduced 
echelon form

Direct approach for sparse matrices Gaussian elimination For sparse matrix the time complexity 
reduces to O

(
n1.5

)
 for 2D and O

(
n2
)
 for 

3D meshes
Iterative approach for large sparse 

matrices
Jacobi method Time complexity is O

(
n2
)
, solution may 

diverge if the stiffness matrix is not 
strictly diagonally dominant [40]

Gauss–Seidel method -ditto-
Richardson method Guarantees to converge if the norm of 

I − �K is less than 1 for a stiffness 
matrix Kan arbitrary constant � [40]

Conjugate gradient method Faster than gradient descent method, 
converges in n steps, may take more 
than n steps or fail due to round off 
errors [40]

Preconditioned conjugate gradient 
method

Preconditioning improves convergence 
speed and stability [7]

Nonlinear Iterative approach for large sparse 
matrices

Newton–Raphson method Requires to compute derivatives, con-
verges very fast if 

||||
f
��
(x)

f
�
(x)

|||| is not too large 
for a variable x [46]

Secant method Faster and more stable than Newton 
method and does not require deriva-
tives, requires two initial points [46]

Regula–Falsi method Unlike Newton and secant methods root 
bracketing is guaranteed here [46]

Lagrange multiplier method Constrained optimization that works if 
critical points (maxima or minima) 
exist [47]

Augmented Lagrange multiplier Enjoys well established unconstrained 
optimization methods, however, 
the penalty coefficient should not 
increase without bound, otherwise, the 
unconstrained problem will become 
ill-conditioned [49]
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