
1 23

Archives of Computational Methods
in Engineering
State of the Art Reviews

ISSN 1134-3060

Arch Computat Methods Eng
DOI 10.1007/s11831-017-9227-2

Mesh Partitioning and Efficient Equation
Solving Techniques by Distributed Finite
Element Methods: A Survey

Shahab U. Ansari, Masroor Hussain,
Suleman Mazhar, Tareq Manzoor,
Khalid J. Siddiqui, Muhammad Abid &
Habibullah Jamal

1 23

Your article is protected by copyright and

all rights are held exclusively by CIMNE,

Barcelona, Spain. This e-offprint is for

personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.

Vol.:(0123456789)1 3

Arch Computat Methods Eng
DOI 10.1007/s11831-017-9227-2

ORIGINAL PAPER

Mesh Partitioning and Efficient Equation Solving Techniques
by Distributed Finite Element Methods: A Survey

Shahab U. Ansari1 · Masroor Hussain1 · Suleman Mazhar3 · Tareq Manzoor4 ·
Khalid J. Siddiqui1 · Muhammad Abid5 · Habibullah Jamal2

Received: 21 February 2017 / Accepted: 24 April 2017
© CIMNE, Barcelona, Spain 2017

1 Introduction

In parallel FEM, a mesh of elements is partitioned along
with a set of algebraic equations and distributed to par-
ticipating Processing Elements (PEs). Each PE solves the
assigned set of equations independently and communi-
cates the solutions to the neighboring PEs. The commu-
nication of solutions takes place due to the dependency of
the boundary elements of the adjoining partitions. Such
inter-processor dependencies can be minimized by reduc-
ing the number of boundary elements. Therefore, in addi-
tion to balance the load, a partitioning scheme must also
curtail the inter-dependency of boundary elements among
various PEs. However, the two conflicting objectives make
mesh partitioning an NP-hard problem. During the past few
decades, several heuristic approaches have been proposed
to address this problem. In addition to mesh distribution,
solving equation is also a significant part of a distributed
FEM system particularly when the size of the coefficient

Abstract The mesh partitioning in parallel Finite Ele-
ment Method (FEM) is an NP-hard problem. During the
past few decades, several heuristic approaches have been
proposed to address this problem. In addition to mesh dis-
tribution, solving a large set of algebraic equations also
significantly contributes to the performance of a parallel
solution. A number of efficient equation solving techniques
are developed which exploit inherent properties of large
coefficient matrices (for instance, symmetry and positive
definiteness). In the present study, the performance of a
distributed FEM system on the basis of the mesh partition-
ing approaches and equation solvers is discussed. The work
contributes towards: (i) categorizing mesh partitioning
methods, (ii) examining implementation variations in linear
and nonlinear solution of equations, and (iii) exploring the
impact of mesh partitioning and an equation solver on the
performance of a distributed FEM system.

 * Tareq Manzoor
 tareqmanzoor@hotmail.com

 Shahab U. Ansari
 sansari@giki.edu.pk

 Masroor Hussain
 hussain@giki.edu.pk

 Suleman Mazhar
 suleman.mazhar@itu.edu.pk

 Khalid J. Siddiqui
 khalid.siddiqui@giki.edu.pk

 Muhammad Abid
 drabid@ciitwah.edu.pk

 Habibullah Jamal
 habibullah@giki.edu.pk

1 Faculty of Computer Science and Engineering, Ghulam Ishaq
Khan Institute, Topi 23640, Pakistan

2 Faculty of Engineering Sciences, Ghulam Ishaq Khan
Institute, Topi 23640, Pakistan

3 Faculty of Computer Science, Information Technology
University, Lahore, Pakistan

4 Energy Research Center, COMSATS Institute of Information
Technology, Lahore 54000, Pakistan

5 Interdisciplinary Research Center, COMSATS Institute
of Information Technology, Wah, Pakistan

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s11831-017-9227-2&domain=pdf

 S. U. Ansari et al.

1 3

matrix is large. A number of efficient equation solving
techniques are developed which exploit inherent properties
of large coefficient matrices (for instance, symmetry and
positive definiteness). In this work, the performance of a
distributed FEM system on the basis of the mesh partition-
ing approaches and equation solvers is discussed by catego-
rizing mesh partitioning methods, examining implementa-
tion variations in linear and nonlinear solution of equations,
and exploring the impact of mesh partitioning and an
equation solver on the performance of a distributed FEM
system [1–5]. In parallel FEM system, a mesh is equally
partitioned into sub-meshes that are distributed over mul-
tiple PEs. The data associated to sub-meshes is accessed
through one of the two parallel approaches—shared-mem-
ory, or distributed-memory architecture. In shared-memory
architecture, all PEs use a single address space to access
data from the shared memory. This type of parallel system
assures that the data is available to all PEs and a soft mech-
anism is in place to avoid racing condition. In distributed-
memory architecture, the data is distributed to PE’s own
address space. To access data in another memory space, a
PE uses message passing protocols [1–3]. However, such
data communication among PEs is regarded as overhead.
To minimize the communication overhead, the number of
shared elements on partition boundaries should be reduced.
For optimal performance, a mesh partitioning algorithm
has two primary objectives—distributing equal number of
elements to all partitions, and sharing smaller number of
boundary elements between partitions. The mesh partition-
ing is generally classified as NP-hard problem and requires
a heuristic approach for the approximate solution [4, 6].
During past few decades, several mesh partitioning heuris-
tics have been proposed [5–13]. Mesh partitioning heuris-
tics can be divided into two main classes [14]:

i) Spatial mesh partitioning, and
ii) Non-spatial mesh partitioning.

Spatial mesh partitioning exploits the underlying geo-
metrical structure of the given mesh. Examples of spatial
mesh partitioning techniques are orthogonal recursive
bisection, inertial recursive bisection, circle recursive
bisection and k–d trees [4, 5, 7, 8]. Non-spatial meshes
devoid of geometrical structures and the partitioning com-
pletely rely on the adjacency information of the mesh ele-
ments. These partitioning methods use graph partitioning
techniques. Recursive level-structure bisection, greedy
approaches and recursive spectral bisection are examples
of non-spatial mesh partitioning [13–17].

In addition to mesh partitioning, the numerical solu-
tion of algebraic equations is also a crucial aspect of a
distributed FEM system especially if the coefficient
matrix is sparse and large. These techniques can be

broadly classified into two classes—linear and nonlinear
equation solvers. Linear equation solvers can further be
categorized as direct and iterative methods. A parallel
FEM solver is shown in Fig. 1.

2 Mesh Partitioning Techniques

An FEM mesh is constructed by tessellating mesh ele-
ments. If �i represents an ith element, a mesh with n ele-
ments can be defined mathematically as,

For simple geometry, FEMs generate regular meshes
(uniform element size) that use quadrilateral elements
in two-dimensional geometry and hexahedral ele-
ments in three-dimensional geometry. For complex

(1)Ω =

n⋃

i=1

Ωi

Fig. 1 Flow diagram of a parallel system for solving FEM

Author's personal copy

Mesh Partitioning and Efficient Equation Solving Techniques by Distributed Finite Element…

1 3

geometry, irregular meshes (non-uniform element size)
are employed that comprises triangular elements in two-
dimensional and tetrahedral in three-dimensional struc-
tures. The regular meshes can be conveniently stored
in contiguous memory space. In contrast, the irregular
meshes require special data structure, such as linked
lists or adjacency matrices, to define nodal connectiv-
ity. Moreover, partitioning of a regular mesh can exploit
divide-and-conquer techniques. However, due to non-
uniform nodal spacing the irregular meshes cannot be
partitioned directly. Therefore, the irregular meshes are
first mapped to a suitable data structure, such as trees or
graphs, before they are partitioned.

The mesh partitioning can be static or dynamic. If the
number of elements does not change during execution, the
mesh partitioning is termed as static mesh partitioning [18,
19]. In such cases, the mesh partitioning is done only once
prior to the execution of the program. However, if the num-
ber of elements changes during simulation lifetime, usually
in irregular meshes, the mesh partitioning is referred to as
dynamic mesh partitioning [11, 20]. The dynamic mesh
partitioning has an additional objective of redistributing
number of mesh elements among the processors at each
processing step.

Recent study shows that the time response of a parallel
system can further be improved if the mesh is reordered
before partitioning [7, 21, 22]. The reason for access time
improvement is the availability of contiguous nodal data in
cache memory that improves cache-hit rate. For dynamic
load balancing, mesh reordering is implemented using
sampling approach [21–23].

2.1 Spatial Mesh Partitioning

Spatial mesh partitioning approach is based on geometrical
coordinates that defines the location of vertices in space.
Many techniques, such as finite element method and finite
difference method, provide meshes with spatial coordinates
[14]. Regular mesh partitioning techniques are easier to
implement, consume less memory and have faster runtime
[7]. These techniques exploit well established foundations
of theoretical geometry. Some of the well-known partition-
ing techniques for regular meshes are presented below.

2.1.1 Recursive Orthogonal Bisection

One of the basic geometrical partitioning techniques is
Recursive Orthogonal Bisection (ROB). In ROB the coor-
dinates are ordered in each dimension and a hyperplane is
used to bisect the coordinate axis at the mid-point termed
as the median [4]. From all hyperplanes, a hyperplane is
selected which cuts minimum number of edges. Figure 2

shows a schematic diagram of partitioning objects for such
a case.

2.1.2 Recursive Inertial Bisection

Another geometrical technique is called Recursive Inertial
Bisection (RIB). RIB algorithm first determines a coordi-
nate axis containing maximum number of vertices. To cut
minimum number of edges the axis is bisected by placing
a hyperplane perpendicular to the axis. The ROB and RIB
use local graph information to determine the location of
hyperplanes [5].

2.1.3 Recursive Circle Bisection

For more complex partitions, a global Recursive Circle
Bisection (RCB) is used which uses circles or spheres
instead of hyperplanes [8]. First, vertices are mapped to the
surface of a sphere in one dimension higher than the current
dimension using stereographic projection. Second, a center
point of the projected vertices is computed. The projected
points are transformed in such a way that the center point
coincides with the origin. Third, a greater circle is selected
randomly that bisects the points into two partitions. Finally,
the circle is mapped back to the original dimension using
inverse stereographic projection.

An example of RCB is shown in Fig. 3. The RCB tends
to produce better partitions when compared to hyperplane-
based techniques. In geometrical graph partitioning, the
vertices proximity is assumed to correspond to shorter path
length. However, in many cases, shorter path length may
not mean true vertices closeness and result poor partition
quality [14].

2.1.4 Tree-Based Partitioning

Tree structures are commonly employed for mesh partition-
ing [7]. The structures provide a better means for dynamic
load balancing by migrating extraneous subtrees to other
processors using sampling approach. A quad tree with
maximum four children (quadrant) at each node is used to

Fig. 2 Orthogonal recursive bisection in 2D space

Author's personal copy

 S. U. Ansari et al.

1 3

represent a 2D mesh. An octree contains maximum eight
children (octant) at each node and is used to describe a 3D
mesh.

In the study of N-body problem, Warren and Salmon
used octree for storing particles [24]. The tree is converted
to a one-dimensional array using Morton space-filling
curves presented in Fig. 4. One-dimensional array is par-
titioned into P parts before the array is distributed to P
processors. Each processor has a disjoint set of particles
that are stored in a local tree. If leaf nodes of a parent node
reside on adjacent processors, a copy of the leave nodes is
shared between them to construct a local tree.

Flaherty et al. describe serial and parallel implementa-
tion of tree-based mesh partitioning [9]. In serial approach,
the octree associated with a mesh is loaded on a proces-
sor. A depth-first tree traversal algorithm is implemented to
compute cost at each node. Another traversal is performed
to partition the tree based on the cost, and the partitioned
tree is assigned to the processors involved. In parallel tree-
based dynamic partitioning, each processor computes cost

at each node in local subtree using depth-first traversal
approach. A global cost structure is obtained by sorting
the costs associated all subtrees in depth-first order. Such
cost structure enables each processor to identify position in
global octree. Starting with global cost each subtree trav-
erses nodes to determine any load imbalance. As soon as
the cost exceeds a multiple of C∕P (total cost/number of
processors) the traversal ceases, and the remaining part of
the subtree is marked for migration.

Flaherty et al. also used octree partition method for
the dynamic load balancing [25]. First, cost at each node
of the octree is determined using depth-first tree traversal
[25]. An optimal size for each partition can be evaluated
by dividing the total cost C by the number of processors P.
Next, the tree is traversed again using truncated depth-first
traversal starting at the root. A node is included in the parti-
tion if the size of the partition is less than the optimal size.
If it exceeds the optimal size, the traversing ceases and the
remaining nodes are added to the next partition. The par-
titions are refined further to remove bumpy boundary sur-
faces and hence reduce communication cost.

For large scale meshes, Tu et al. proposed octree-based
mesh partitioning [26]. In his algorithm, first the octants
at each processor are sorted using preorder tree traversal
(Z-order). To compute partitioning, each processor needs to
know total number of leaf octants at each processor. Once
the information is available through reduction operation,
the processors prepare the data for migration. An internal
memory manager is used to store octant information locally
at each processor’s memory module. The memory per-
taining leaf octants that have migrated from a processor is
reclaimed by the memory manager. Memory is reallocated
to each newly arrived leaf octant [26].

Mitchell et al. in [27] proposed a dynamic load balanc-
ing algorithm using tree data structure. In sequential imple-
mentation of the algorithm, a quadtree/octree is generated
from the mesh in such a way that the leaves are weighted
as 1.0 and internal nodes are weighted as 0 [27]. The tree
is first traversed using depth-first method to compute sum
of the weights at each node. This step takes O (N) opera-
tions where N is the total number of nodes. The tree is
traversed again to partition it into p processors. If the sum
of the weight at a node is less than N/p, the subtree at the
node is included in the partition as shown in Fig. 5. Oth-
erwise, the tree is further traversed down. The second tra-
versal of the tree has O (N log p) time complexity. In par-
allel implementation, the tree is traversed twice. First, tree
traversing pass assigns the nodes with weight sum except
the leaves which are not part of the global tree. Such leaves
are called pruning leaves and are assigned zero weight. In
the second pass, weights of pruning leaves are computed
by gathering weight information from other processors. At
this point, each processor has all the information it needs

Fig. 3 Partition as a result of recursive circle bisection [8]

Fig. 4 Space filling curve using Morton technique [24]

Author's personal copy

Mesh Partitioning and Efficient Equation Solving Techniques by Distributed Finite Element…

1 3

for partitioning the local subtree. If a processor contains
extra nodes, it transfers those to other processors that are
underweight. The time complexity of the parallel algorithm
is O (t (N)/p).

Hussain et al. [7] reported an improved cache-miss rate
by reordering mesh dynamically. In serial implementa-
tion of mesh reordering, the centroids of each element are
computed using greedy approach. A quadtree/octree for
2D/3D mesh is constructed by employing quicksort using
centroids of the mesh. Moreover, the quick sort partition-
ing algorithm reorders the leaf nodes and elements based
on the geometrical indices of the quadtree/octree. Further-
more, the reordered tree is transformed into a one-dimen-
sional array of nodes before the tree is partitioned and dis-
tributed to participating processors. The time complexity
of the serial implementation is reported as O(N logN). The
parallel implementation of reordering algorithm uses sam-
ple sorting to reorder and redistribute the mesh. The time
complexity t of the parallel reordering algorithm is claimed
as,

where N is the total number of nodes and P is the total
number of processors. In (2), O

(
N

P

)
 is the time taken to

compute centroids of sub-meshes. The second term
O(P logP) denotes time consumed by quicksort algorithm
for index vector in each partition. The redistribution of

(2)
t(N) = O

(
N

P

)
+ O(P logP) + O

(
P2

)
+ O

(
N

P
log

N

P

)
,

sub-meshes takes O
(
P2

)
 time. The last term of (2),

O
(

N

P
log

N

P

)
 is due to the mapping of the 2D mesh to a

quadtree (octree in case of 3D mesh) for reordering sub-
meshes using quicksort.

2.2 Non‑spatial Mesh Partitioning

Complex irregular meshes are difficult to partition in spa-
tial domain because of their irregular geometrical topol-
ogy. Moreover, irregular meshes also require complex
data structure to store elements along with neighborhood
information. General approach of partitioning irregular
meshes is to transform them into graphs or trees such
that each element becomes a vertex in the graph or a leaf
node in the tree. After mapping, graph or tree partition-
ing methods are employed.

A graph G(V ,E) consists of a set of vertices V and a set
of edges E. Let P is the number of processors available
in a cluster for parallel computation. The goal of graph
partitioning is to distribute V to P processors such that
number of vertices assigned to each processor is less than
or equal to |V|

P
 (i.e., ratio of total number of vertices to

number of processors) while minimizing edge cut [28,
29]. For a weighted graph the upper bound of the load
is expressed in terms of vertices weights. Figure 6 shows
the distribution of tasks to two processors P0 and P1 as
a result of graph partitioning technique with minimum
edge-cut and highlighted with thick edges. The graph
partitioning is an NP-hard problem. During past few
decades, several heuristics methods for graph partition-
ing have been developed for an approximate solution in
polynomial time. Two approaches are popular in graph
partitioning:

 (i) Single-level approach, and
 (ii) Multilevel approach

These approaches are discussed in the next two sections.

Fig. 5 Partitioning of grid and corresponding tree into two parts [27]

Fig. 6 Graph partitioning for P0 and P1 with minimum edge-cut
shown by thick edges

Author's personal copy

 S. U. Ansari et al.

1 3

2.2.1 Single-Level Graph Partitioning

The structural or combinatorial approach of graph par-
titioning is used for coordinate free graphs [14]. This
approach uses connectivity and path lengths between
vertices to determine the partitions. A simple structural
method is Recursive Level-structure Bisection (RLB) that
comprises two steps: finding two farthest vertices with
maximum path length, and employing breadth-first algo-
rithm to compute a subset of vertices that are halfway of
the maximum distance. The RLB is simple to implement
with compromised partition quality [14]. Another greedy
approach proposed by Farhat is similar to RLB but the
method is non-recursive [16]. The greedy approach com-
putes k partitions, one at a time, by traversing the graph
in breadth-first manner from a vertex. A similar greedy
approach is Greedy Graph Growing (GGG) technique
that selects a vertex randomly. Other vertices are added to
the selected vertex based on minimum edge-cut criteria
[17].

Another approach that gained plausibility in graph par-
titioning is Recursive Spectral Bisection (RSB) [30]. In
this approach, a Laplacian matrix L of |V| × |V| (a vector
space of V vertices) of the given graph is computed. The
Laplacian matrix is the difference of the degree matrix and
the adjacency matrix. Next, an eigenvector x whose eigen-
value is the second smallest is determined. Such eigenvec-
tor is called Fiedler vector that possesses information about
graph connectivity. The product xTLx gives the number of
edges to be cut in bisection step. For a perfect partition a
Fiedler vector is determined that minimizes. xTLx. The Fie-
dler vector is bisected using the median value of the vec-
tor. Bui et al. proposed an improved version of RSB that
divides the graph into 4 and 8 sub-graphs [31]. RSB pro-
duces partitions of high quality with minimum edge cuts.
The only disadvantage of RSB is the expensive computa-
tion of Fiedler vector with computation cost of O (N logN).

2.2.2 Multilevel Graph Partitioning

In another popular graph partitioning technique termed as
multilevel graph partitioning [7, 30], a graph is contracted
by combining certain specific nodes. The contracted graph
is partitioned and expanded back to the original size. For
larger graphs, multilevel graph partitioning technique
results in fast partitioning with good quality in terms of
balanced load, small edge-cut and smooth boundaries [18,
19]. Three steps involved in multilevel graph partitioning
are: coarsening the graph through multiple levels, parti-
tioning the coarsest graph, and refining and uncoarsening
the partitioned graph [32]. The coarsening of the graph is
based on maximal matching that determines a set of edges
incident on different vertices [19]. The vertices whose
edges are maximally matched are collapsed to multi-nodes.
Karypis et al. proposed Kernighan–Lin (KL)-based mesh
refinement technique that exchanges a subset of vertices in
partitions to further minimize edge-cut [19]. In partitioning
step, the coarsest graph is bisected using one of the parti-
tioning techniques described in Sect. 2.1. In the uncoarsen-
ing step, the partitioning is refined by relocating some of
the mesh elements between partitions. The entire process
is repeated for each partition until the desired number of
graph partitions is obtained. Figure 7 shows a schematic
of three steps involved in Multi-Level Recursive Bisection
(MLRB) graph partitioning [33]. The time complexity of
MLRB of a graph with number of edges E and partitions k
is O(|E| log k) [32].

In faster version of multilevel graph partitioning,
Karypis and Kumar partition the graph into k parts in one
step without going through k times graph coarsening [18].
Figure 8 shows the schematic of the coarsening, partition-
ing and refining steps involved in the multilevel k-way par-
titioning of a graph. The coarsening step is similar to the
one explained in [19]. Once the coarsest graph is achieved,
a recursive bisection partitioning is applied to divide the

Fig. 7 A schematic of multi-
level recursive bisection graph
partitioning [33]

Author's personal copy

Mesh Partitioning and Efficient Equation Solving Techniques by Distributed Finite Element…

1 3

graph into k parts. In the refinement step a modified ver-
sion of KL techniques are implemented. In KL technique
a gain value for all the boundary vertices is computed by
taking the difference between external degree and inter-
nal degree of the graph. External degree is the sum of all
weighted edges between the moving vertex in a partition
and the vertices in other partitions. Similarly, the internal
degree is the sum of all weighted edges between a moving
vertex in a partition and the vertices inside the boundary
of the same partition. The vertices with positive gain and
the vertices that do not violate the balancing of the parti-
tions are selected for migration. The scanning of the ver-
tices is carried out using greedy KL refinement and global
KL refinement [19]. In greedy KL refinement, the bound-
ary vertices are traversed randomly and move a vertex with
positive gain. However, the method of refinement lacks
hill climbing strategy to avoid local minima, and thus the
refinement algorithm settles with a suboptimal solution.
The process of global KL refinement offers hill climbing
strategy by storing vertices in a priority queue according to
their gain and move the vertex with highest gain. If the bal-
ancing conditions are not met, the vertex with second high-
est gain is selected for movement. The time complexity of
multi-level k-way partitioning (MLkP) is reduced to O(|E|)
by a factor of log k when compared to MLRB.

Karypis et al. presented parallel implementation of
coarsening, partitioning and refining of multilevel k-way
partitioning [10, 13, 23]. Karypis et al. have used graph
coloring to produce disjoint sets of vertices to simultane-
ously coarsen and uncoarsen the graph on multiple proces-
sors [10, 23]. The coloring of graph, that is a computation-
ally intensive process, is implemented using Luby’s parallel
algorithm [34]. In the coarsening step, vertices with the

same color are matched iteratively. A variable is defined
for each vertex that stores the index number of the matched
vertex. Colored graph resolve the issue of selecting various
vertices for matching. Moreover, in partitioning phase, the
parts of the coarsest graph are broadcasted using all-to-all
operation (i.e., sends data from all-to-all processors). Fur-
thermore, each processor partitions the graph using nested
dissection [35] and greedy partitioning refinement. The
nested dissection is a divide-and-conquer heuristic for the
solution of sparse symmetric systems of linear equations
using graph partitioning. The nested dissection gives worse
partitioning when compared with serial recursive bisec-
tion, however, it takes less time. The partition quality can
be improved by mesh refinement in the uncoarsening phase
[10, 23]. In uncoarsening phase, the vertices in the coarser
graph are projected to the finer graph followed by partition-
ing refinement. The parallel refinement approach is similar
to the greedy refinement except the step of moving a group
of vertices simultaneously [19]. The vertices of the same
color make an independent set that are considered for the
movement. Moreover, a subset of these vertices with posi-
tive gain is moved to other partitions. The sum of individ-
ual gain of each vertex is the overall gain of the group of
vertices moved. However, the movement of group of ver-
tices involves extensive inter-processor communication. To
minimize the inter-processor communication, only the par-
tition number associated with a vertex is changed without
physically moving the vertex. The refinement process con-
tinues in a loop for all colors in the graph [10, 13, 23]. The
load balance constraint is also maintained by monitoring
the continuously updated partition weight for every move-
ment of the vertices [10, 13, 23].

Karypis and Kumar extended multilevel partitioning
from single objective/single constraint to multi-constraint
graph partitioning [20]. Single objective/single constraint
graph partitioning can be defined as the partitioning of a
graph where the objective is to minimize edge cut and the
constraint is to balance the number of vertices [10, 23].
Multi-constraint graph partitioning has more than one con-
straint. Karypis et al. have proposed two approaches for
multi-constraint multilevel graph partitioning: multilevel
recursive bisection for partitioning into two sub-graphs,
and multilevel k-way partitioning for k sub-graphs [20]. In
coarsening step, two approaches can be taken to collapse
vertices into multi-nodes: heavy edge heuristic, and bal-
anced edge heuristic. In heavy edge heuristic, the uniform-
ity of weight vector is determined by computing the differ-
ence between maximum and minimum weights of edges.
In balanced edge approach, the difference is taken with
respect to the average weight of the vector [19]. In parti-
tioning step, a graph growing bisection technique is used.
First, a vertex is randomly selected and added into bucket
A while the remaining vertices are added into bucket B. All

Fig. 8 Multilevel k-way partition [11]

Author's personal copy

 S. U. Ansari et al.

1 3

vertices in bucket B are moved to m (size of the weight vec-
tor) priority queues based on the maximum weight in the
weight vector. Finally, depending on the relative order of
the weights of graph B, a vertex is moved from the top of a
specific priority queue. The movement of vertices contin-
ues until the weight of the graph A is greater than or equal
to the half of weight of the original graph. The refinement
step is implemented differently in recursive bisection and k-
way partitioning. In recursive bisection, two priority queues
are maintained, one for each bucket for storing gains of
moving the vertices. Depending on the relative weights of
two buckets, a vertex is selected from a queue in a partition
and moved to other partition. Whereas, in k-way partition-
ing, a set V ′ is built that contains the boundary vertices in a
partition. Another set V ′′ of all vertices in the neighborhood
is formed which satisfies the minimum edge-cut criteria. A
set V ′′′ is extracted from V ′′ that fulfills the load balancing
constraint. From V ′′′ a vertex is moved to the partition that
gives the minimum edge-cut.

Schloegel et al. proposed a parallel algorithm for static
multi-constraint multilevel graph partitioning [11]. The
multi-constraint parallelization is an extension of the paral-
lelization of single constraint graph partitioning presented
by Karypis et al. [7]. The only difference is the implemen-
tation of the refinement phase during uncoarsening the
graph. The refinement phase is parallelized in two phases:
a group of vertices with the same color is moved to other
partitions with an update of a temporary data structure, and
the balance constraints are validated after migration of ver-
tices. If the balance constraints are not violated, the vertex
movement is executed, otherwise, a portion of the moved
vertices are recalled [20]. The recall may result in load
imbalance. However, since the number of recalls is small,
it is unlikely to have load imbalance after partitioning
phase. The static partitioning can also be used effectively
for dynamic multi-constraint multilevel graph partition-
ing in conjunction with scratch-remap or locally matched
scratch-remap. In dynamic load balancing, an additional
constraint about minimization of data redistribution has
to be satisfied. Initially, graph-based partitioning is imple-
mented using sequential algorithm in the Metis library
[18, 19]. The partitioning algorithm is parallelized using
MPI library on distributed systems [10, 23]. LaSalle et al.
extended graph partitioning to multithreaded algorithm for
shared memory systems [6]. The multithreaded algorithms
use multiple threads for independent computation but share
the same data resources [36].

The so-called multilevel ant-colony algorithm, which is
a relatively new metaheuristic search technique for solving
optimization problems, was applied and studied in [37],
and the possible parallelization of this algorithm is dis-
cussed in [38]. The multilevel ant-colony algorithm per-
formed well and is better than the classical k-METIS and

Chaco algorithms; it is comparable with the combined evo-
lutionary/multilevel scheme used in the JOSTLE evolution-
ary algorithm.

2.3 Solving System of Algebraic Equations

In an FEM system, a set of algebraic equations can be
solved for unknown quantities using inverse of the stiff-
ness matrix. However, taking inverse of a large and sparse
stiffness matrix is a computationally expensive. Therefore,
fast numerical techniques are used to determine the inverse
matrix and solve for the unknown quantities. In the next
two sections, some well-known linear and nonlinear equa-
tion solving techniques are briefly discussed.

2.3.1 Linear System of Equations

Linear equation solving techniques can be classified as
direct method and iterative method. The direct methods
directly compute inverse of the stiffness matrix. These
methods, however, become very expensive for large and
sparse matrices. On the other hand, the iterative methods
evaluate an approximate solution by updating the value of
unknowns iteratively.

Direct approach

 (i) Most commonly used direct method is called the
Gaussian elimination method [39]. In Gaussian elim-
ination method, the matrix is decomposed into upper
and lower triangles using famous LU factorization
[39].

 (ii) The matrix decomposition can be made more effi-
cient for some special matrices, such as, banded
matrices or matrices that yield to Cholesky decompo-
sition. The upper triangle is solved by backward sub-
stitution of the computed coefficients. The drawback
of Cholesky method is the propagation of round off
errors originated from floating point operations [39].

 (iii) The Gauss–Jordan elimination is a simple modifica-
tion of the Gauss-elimination method that converts
the coefficient matrix into reduced row echelon form
[39]. The Gauss–Jordan method produces more accu-
rate results in solving a system of linear equations
and computing the inverse of the matrix simultane-
ously.

Iterative approach

(i) One of the popular iterative methods is Jacobi
method. The Jacobi method starts with an initial guess

Author's personal copy

Mesh Partitioning and Efficient Equation Solving Techniques by Distributed Finite Element…

1 3

to the solution and is solved iteratively until the solu-
tion of desired precision is reached [40].

(ii) A more efficient iterative scheme is referred to as
Gauss–Seidel iteration method [40]. In this method,
the coefficient matrix is decomposed into lower and
upper triangles before a variable is approximated.
The decomposition matrix allows the Gauss–Seidel
method to converge faster than the Gauss elimination
method. However, the method is less stable and may
oscillate indefinitely around the correct solution if the
coefficient matrix is not strictly diagonally dominant
[40]. Therefore, there is a trade-off between speed of
convergence and the stability of the method [40].

(iii) Richardson method is another example of iterative
method [1, 3]. In this method, � is a constant multi-
plier and can be written as:

where I is an identity matrix. (5) leads to computation
of parameter u in iterations as:

(iv) An iterative algorithm termed as conjugate gradient
method is used for linear system of equations com-
prising symmetric positive-definite matrix. The con-
jugate gradient method is mostly employed for large
sparse matrices that frequently result in the numerical
(approximate) solution of BVPs [40, 41]. Suppose bn
are n mutually conjugate vectors with respect to Ke
forming a basis of ℝn in n dimensional real space, the
solution to (16) can be expressed as:

 If Ke in (16) is symmetric and positive definite
then the coefficients �i can be computed as follows:

 The quantity ⟨., .⟩ defines the inner product between
two arguments. The first basis vector b0 is the negative
of the gradient of f at an initial solution u0:

 The second basis vector will be conjugate to the above
gradient vector. Similarly, each new basis that is con-
jugate to all the previously gradient vectors is com-
puted iteratively.

(3)�Keui = �f e,

(4)ui +
(
�Ke − I

)
ui = �f e,

(5)ui =
(
I − �Ke

)
ui + �f e.

(6)ui+1 =
(
I − �Ke

)
ui + �f e.

(7)u∗ =

n∑

i=1

�ibi.

(8)�i =
⟨bi, f⟩
⟨bi, biK⟩

.

(9)b0 = f − Ku0.

(v) The conjugate gradient method gives exact solutions.
However, the conjugate method is unstable and the
algorithm may oscillate around the exact solution [42,
43]. To stabilize the solution, a precondition matrix M,
that is symmetric positive-definite and fixed, is used to
compute the gradient vector. Multiplication of K with
M results in the smaller condition number �(MK). The
preconditioning leads to a well-known method called
preconditioned conjugate gradient (PCG) to solve
BVPs [42–45]. Mathematically, using (9), the PCG
can be defined as follows:

2.3.2 Nonlinear System of Equations

Many physical systems, such as simulation of car crash,
fluid–structure interaction and underground fluid flow, are
inherently nonlinear. The nonlinear FEM systems result in
nonlinear system of equations that are solved numerically
[7]. The system of equations involving nonlinear functions,
such as trigonometric, hyperbolic, exponential or logarith-
mic functions, is called a system of nonlinear equations.
The nonlinear equations are generally solved using numeri-
cal techniques to produce inexact solution. The prime
objective of these methods is to converge to exact solution
in a smaller number of iterations with predefined error tol-
erance � as discussed below:

 (i) The most popular method for solving nonlinear equa-
tions is Newtorn–Raphson method. Suppose the non-
linear equation is presented as:

The solution of the above equation can be defined as:

The Newton–Raphson method iteratively computes
improved solution of Eq. (12). The method requires
initialization with one input value. If i is the iteration
number, the general formula for iterative procedure
for computing solution is given as:

Finally xi+1 is tested for convergence if the following
condition is satisfied:

Newton–Raphson method converges quickly in rela-
tively fewer numbers of iterations [46]. However, to

(10)b0 = M−1(f − Ku0).

(11)f (x) = 0

(12)
|||f
(
xR
)||| < 𝜀

(13)xi+1 = xi −
f (xi)

f
�
(xi)

.

(14)
|||f
(
xi+1

)||| < 𝜀.

Author's personal copy

 S. U. Ansari et al.

1 3

use Newton–Raphson method one needs to compute
the derivative of the given function.

 (ii) The secant method is similar to Newton–Raphson
method except the derivative of the given equation is
approximated as:

 Using Eq. (16) the secant method can be written as:

 Equation (16) shows that, in contrast to Newton–
Raphson method the secant method requires two ini-
tial values as input to compute the current value of
the solution.

 (iii) The Richardson method discussed above can also be
used for the solution of nonlinear equations if � is
treated as a variable. Equation (6) converges if norm
of I − �K is less than one. For maximum and mini-
mum eigenvalues of K, �n and �1 respectively, the
value of � is computed as:

 (iv) In multi-physics, BVPs such as a moving structure
in a fluid, the governing equations are first trans-
formed into constrained variation problem. The prob-
lem is converted into series of unconstrained prob-
lems using Lagrange multiplier technique [47]. For
instance, in an optimization problem, an objective
function f (x, y) is needed to be maximized subject
to the constraint g(x, y) = c for some constant c. The
Lagrangian formulation can be written as:

where parameter � is called Lagrange multiplier. A
penalty term � is added to Lagrangian formulation to
retain the size of the system to that of primal vari-
ables as:

The resulting expression in Eq. (19) is commonly
referred to as augmented Lagrangian formulation
[48, 49]. The augmented Lagrangian formulation can

(15)f
�(
xi
)
≈

f
(
xi
)
− f (xi−1)

xi − xi−1

(16)xi+1 = xi −
f
(
xi
)

f
(
xi
)
− f

(
xi−1

) ⋅ (xi − xi−1).

(17)� =
2

�n + �1
.

(18)min�(x, y, �) = f (x, y) + �.(g(x, y) − c)

(19)
min�(x, y, �,�) = f (x, y) + �.(g(x, y) − c)

+ �.
(
(g(x, y) − c)2

)
.

be extended to multiple constraints, where � and �
for each constraint have to be evaluated. If the (19)
involves BVPs, it can be mapped to a discrete mesh
and solved numerically using FEM.

2.4 Discussion

Various mesh partitioning techniques and a number of
equation solving techniques for a distributed FEM system
are reviewed. The following discussion compares and high-
lights some of the intrinsic features of mesh partitioning
methods and equation solving techniques that are crucial
for the performance of a distributed FEM system.

2.4.1 Static Versus Dynamic Mesh Partitioning

If the number of FEM tasks to be distributed is fixed or
change in a predictable fashion, the distribution can be done
statically. A static mesh partitioning is a single-objective
and single-constraint problem. The objective of the parti-
tioning is to minimize the edge-cut while constraining the
load balance. Such mesh partitioning is carried out prior to
computations of mesh elements. Therefore, the partitioning
can be done offline using sophisticated techniques that pro-
duce better partitioning quality [50]. If the processing and
memory requirements for a mesh computation are not too
high, the static mesh partitioning can even be performed on
a single processor.

The dynamic task distribution is used for load balancing
if FEM workload on participating processors varies during
the execution time. For instance, in adaptive mesh parti-
tioning, the number of elements on each processor is modi-
fied in runtime. Such runtime changes result load imbal-
ance and require redistribution of mesh elements among
PEs. The redistribution of mesh elements induces commu-
nication overhead. For an efficient parallel system, the com-
munication overhead must be kept minimum. Therefore, for
dynamic mesh partitioning, time efficient algorithms are
crucial to avoid deterioration of overall performance [50].
It is noteworthy that in dynamic mesh partitioning, the data
is already distributed. Accordingly, the best strategy is to
figure out the candidate elements that need to be relocated
rather than gathering the entire mesh for repartitioning
from scratch.

2.4.2 Spatial Versus Non-spatial Mesh Partitioning

A spatial FEM mesh is represented by a spatial grid with
each node separated by a fixed distance [14]. The nodes

Author's personal copy

Mesh Partitioning and Efficient Equation Solving Techniques by Distributed Finite Element…

1 3

of the grid are described using (2D or 3D) spatial coordi-
nates. The knowledge of spatial coordinates aids in defin-
ing global relationship between elements. In spatial mesh,
the proximity of elements is determined by computing, for
instance, Euclidean distance [14]. In most cases, spatial
distances truly represent the relationship between mesh ele-
ments. However, in some cases, the path lengths between
elements vary wildly from the computed spatial distances.
Due to such discrepancies, the resulting partitioning from
spatial methods may have quality issues [14]. Spatial
meshes can also be transformed into graphs for employing
graph theoretic partitioning techniques.

Non-spatial meshes cannot be distributed directly to
a multiprocessor system due to their irregular geometry.
Such meshes are initially mapped to some suitable struc-
tures, such as, graphs before partitioning. The meshes
represented by graphs can be distributed using graph-the-
oretic partitioning algorithms. For instance, graph walking
algorithm is a local-based graph traversing approach that
allows access to the neighboring nodes. In such cases, sev-
eral greedy techniques, such as greedy graph growing or
graph growing bisection, are available to determine optimal
graph partitioning. However, a greedy approach lacks the
global view of a graph and possesses a potential tendency
to fall into local minima [14]. To appease such problems,
hill climbing methods may be incorporated into greedy
techniques.

2.4.3 Graph Versus Tree Data Structures

Graph data structures are frequently used to represent spa-
tial and non-spatial FEM meshes [19]. The graph represen-
tation gives meshes an opportunity to use well established
graph-theoretic approaches for mesh partitioning. The par-
titioning of spatial meshes using graphs exploits geometri-
cal topology of the meshes for improving partition quality
[14]. Non-spatial graphs rely on neighborhood connectivity
of the nodes and use greedy approaches for mesh partition-
ing [19]. Graphs can be used in static as well as in dynamic
mesh partitioning [11].

Tree data structures are commonly employed by spatial
meshes in dynamic mesh partitioning [7, 9, 22–27]. Two-
and three-dimensional FEM meshes can be conveniently
mapped into quadtree and octree respectively. In tree-based
partitioning, the tree is transformed into a 1-D array using
space-filling curves, such as, Morton or Peano–Hilbert
curves [51]. The space-filling curves ensure that the nearby
nodes are proximally near in the 1-D array. The resulting
1-D array is subsequently bisected to achieve balanced
mesh partitions. In tree-based partitioning approaches, the

load imbalance can also be computed using breadth-first or
depth-first traversal [9, 25, 27].

2.4.4 Single Level Versus Multilevel Partitioning

For smaller meshes with uniformly distributed elements,
the single level partitioning works more efficiently. In FEM
mesh partitioning, there is a tradeoff between quality and
complexity of mesh partitioning algorithm. Some mesh
partitioning algorithms are less complex, such as recursive
bisection or inertial bisection, however, the quality of par-
titioning is compromised. Alternatively, more complex par-
titioning algorithms, such as, recursive spectral bisection or
refinement-based partitioning, generally produce partitions
of optimum quality [14].

For large and non-spatial meshes, the multilevel par-
titioning algorithms have proved to be faster with better
partitioning quality [18, 19]. In multilevel partitioning,
the coarsening and the uncoarsening steps take much less
time than the partitioning of a mesh. Therefore, the multi-
level partitioning is more economical and better than sin-
gle-level partitioning if the size of the mesh is large [19].
Additionally, the coarsest mesh in multilevel partitioning
is smaller compared to that of original one. Consequently,
small meshes can afford more sophisticated mesh parti-
tioning algorithms to improve quality [19]. Moreover, the
refinement step in uncoarsening phase also aids partition-
ing quality.

2.4.5 Serial Versus Parallel Partitioning

The mesh partitioning can be implemented offline in serial
fashion using a single processor especially if the mesh size
does not change [50]. Such mesh partitioning provides
flexibility to employ complex and expensive algorithms to
produce high quality partitioning. The partitioned mesh is
subsequently distributed to processors for distributed FEM
computations. Many of the algorithms developed for mesh
partitioning are serial in nature. The advantages of serial
approaches include no parallel computing overheads, such
as, mesh partitioning and inter-processor communications
among partitions. Small FEM meshes containing few thou-
sand of elements do not generally require large memory
and computing resources. Even if there is a need to dis-
tribute the mesh over multiple processors, the partitioning
of the mesh can be accomplished on a standalone machine
either for static or dynamic meshes. Complex techniques
for single-level partitioning, such as refine-based greedy
approaches, can be employed for small meshes to achieve
high partitioning quality.

Author's personal copy

 S. U. Ansari et al.

1 3

In parallel implementation of FEM, some researchers
assert that the available computing resources should also
be utilized for partitioning of meshes [10, 29, 23]. Karypis
et al. and Schloegel et al. proposed parallel multilevel mesh
partitioning techniques to parallelize coarsening, parti-
tioning and uncoarsening of a mesh [10, 11, 23]. Also, in
dynamic mesh partitioning, a mesh is already in distributed
form on multiple processors. The dynamic mesh partition-
ing could be very costly if the mesh is gathered on a single
processor and repartitioned repeatedly. Additionally, the
number of elements to be migrated is small [7]. Therefore,
it is wise to implement parallel dynamic mesh partition-
ing scheme so that the redistribution of elements can be
expedited. The large meshes pose a challenge in FEM solu-
tion due to memory and processing power constraints. The
natural choice for solving large meshes is to distribute the
computing tasks over multiple processors. To take advan-
tage of a parallel system, the partitioning algorithm should
utilize the available computational power efficiently. The
parallel algorithm implemented by Karypis et al. used less
number of processors as it progresses in graph coarsening
step [10]. In contrast, the parallel algorithm that Hussain
et al. proposed utilizes all available processors in partition-
ing a mesh [7].

2.4.6 Single-objective Versus Multi-objective Partitioning

The static mesh partitioning can be formulated as single-
objective, single-constraint optimization problem with

an objective to minimize the edge cut under the con-
straint of balanced partitioning [11]. In such problems,
the physical properties of the domain do not change with
time or space. There are many real life problems, such
as, contact mechanics or crash simulation that include
multi-phase and (multi-physics) domains. The FEM
solution of such problems requires adaptive meshes
which can be formulated as multi-objective, multi-
constraint optimization problems. However, solving
multi-objective, multi-constraint problems is generally
challenging. An optimal solution is usually difficult to
find due to the larger solution space, the large number
of local optima, and the presence of often conflicting
solutions.

2.4.7 Local Versus Global Partitioning

In greedy graph partitioning approaches, a partition tech-
nique uses local information at the neighboring nodes to
partition a mesh. Such approaches devoid information
about the global structure of the mesh. The greedy par-
titioning approaches are fast but have a potential to fall
into local optima. The global information of the complete
graph can be obtained from eigenvalues and eigenvectors
of Laplacian matrix of the graph. The partition based on
global information tends to be more accurate, however,
requires more computations. For large FEM meshes, global
partitioning techniques may be employed to partition the
coarsest graph in multilevel graph partitioning.

Table 1 Comparison of Hussain et al. and Metis reordering algorithms using OpenMP

Procs Execution time (Hussain et al.)

EL = 15,625 EL = 12,167 EL = 10,648 EL = 8000 EL = 1000

 1 2.94 2.21 1.94 1.42 0.17
 4 0.62 0.56 0.50 0.37 0.04
 8 0.38 0.29 0.25 0.19 0.03
 12 0.28 0.21 0.18 0.14 0.02
 16 0.23 0.17 0.15 0.12 0.02

Procs Execution time (Metis)

EL = 15,625 EL = 12,167 EL = 10,648 EL = 8000 EL = 1000

 1 15.60 12.00 10.47 7.88 0.98
 4 4.26 3.33 2.84 2.31 0.30
 8 2.43 1.92 1.54 1.24 0.19
 12 1.72 1.46 1.14 0.90 0.16
 16 1.45 1.04 1.03 0.76 0.15

Author's personal copy

Mesh Partitioning and Efficient Equation Solving Techniques by Distributed Finite Element…

1 3

2.4.8 Computation Versus Communication

The distributed FEM computing provides large computing
and storage resources. The parallel system gives an edge
to the computation of complex scientific and engineering
problems. Moreover, the parallel system with distributed
memory also facilitates storage for problems with huge
amount of data [36]. The parallel computation of distrib-
uted tasks may require exchange of information between
processors. Any form of communications between proces-
sors is regarded overhead, and must be kept minimum to
expedite the overall parallel processing [19]. Therefore, the
main objective of the mesh partitioning techniques should
be to minimize the inter-processor communications for effi-
ciency and performance of a distributed FEM system.

Table 1 shows comparison of the two mesh reorder-
ing algorithms for different meshes using OpenMP [52].
Table 2 summarizes the time complexities of various mesh
partitioning algorithms on serial and parallel architectures
(see Sect. 2.4.9).

2.4.9 Summary of Mesh Partitioning Techniques

The discussion so far deduces that there is no universal
mesh partitioning method that works effectively and effi-
ciently for all types of FEM meshes. Moreover, the mesh
partitioning is highly application dependent, and there
exists a trade-off between quality of partitioning (as a result
of complex techniques) and partitioning speed [19, 30, 50].
In Table 3, a summary of the advantages and disadvantages
of the mesh partitioning techniques is presented.

2.4.10 Equation Solvers Selection

The equation solvers take significant portion of FEM com-
putations due to enormous size of coefficient matrices.

Therefore, a judicious selection of a solution is recom-
mended. Often, the selection of an equation solver is based
on the size and physics (linear or nonlinear) of the prob-
lem on hand [53]. Other selection criteria for the equation
solvers are symmetry, sparseness and of the coefficient
matrix. In addition, a solver should be robust, general in
scope, efficient, automated, scalable and predictable [53].
Direct methods used in equation solvers are robust but are
computationally expensive. In contrast, iterative methods
gradually converge to the optimal result based on speci-
fied tolerance. The convergence tolerance should be chosen
greater than the condition number of the coefficient matrix.
If diagonal values of the coefficient matrix are close to zero
(as is the case for sparse and ill-conditioned matrices), the
computations become unstable. To ensure stability and
accuracy, an equation solver should use ingrained proper-
ties, such as, condition number, symmetry and positive
definiteness, of the coefficient matrix. The diagonally dom-
inant sparse coefficient matrices also minimize communi-
cations between processors. A matrix can be converted into
a diagonally dominant matrix using a pivoting scheme [53].

2.4.11 Equation Solvers’ Properties

In FEM, for steady state problems, the BVPs are trans-
formed into a large system of algebraic equations. For sta-
ble systems, the coefficient matrix is symmetric and posi-
tive definite. Such properties of the matrix must be taken
into account while solving the equations numerically to
improve accuracy, stability and speed. The unstable sta-
ble systems results in ill-conditioned or singular matrices
that can be solved using a suitable matrix decomposi-
tion method. Therefore, the type of solver used in FEM
may also affect the overall performance of the system. In
Table 4, a summssary of properties of equation solvers is
presented.

Table 2 Time complexities of
mesh partitioning techniques

Mesh partitioning technique Time complexity

Recursive orthogonal bisection [4] t(N) = O(d N logN)

Fiedler vector creation in recursive spectral bisection
[30]

O(N logN)

Serial multilevel recursive bisection [32] O(|E| log k)
Parallel multilevel recursive bisection [10] t(N) = O

(
|E|
P
log k

)

Serial multilevel k-way partitioning [18] O(|E|)
Parallel multilevel k-way Partitioning [10] t(N) = O

(
N

P

)
+ O(P logN)

Serial mesh reordering [7] t(N) = O(N logN)

Parallel mesh reordering [7] t(N) = O
(

N

P

)
+ O(P logP) + O

(
P2

)
+ O

(
N

P
log

N

P

)

Author's personal copy

 S. U. Ansari et al.

1 3

Table 3 Summary of mesh partitioning techniques

Mesh partitioning technique Advantages Disadvantages

Spatial mesh partitioning Exploits geometry to capture global placement of
vertices using spatial coordinates [14]

Geometrical distance between vertices may not be
true descriptor of vertices proximity [14]

Non-spatial mesh partitioning Uses neighborhood of vertices for local con-
nectivity [14]

Employ greedy approach for partitioning [16]

Blind to global placement of vertices [14]
Vulnerable to local optima [16]

Single-level mesh partitioning Simple to implement
Fast for small meshes [16]

Slow for large meshes
Poor partitioning quality for large meshes [7]

Multilevel mesh partitioning Efficient partitioning for large meshes [7]
The refinement phase improves quality of parti-

tioning [19]

Complex in implementation due to coarsening and
uncoarsening phases [7]

Partitioning of the coarsest mesh compromises
quality [7]

Partitioning using optimization methods Multilevel ant-colony optimization works better
than k-metis [83]

Fundamental issue with optimization methods is
falling into local minima

Graph-based mesh partitioning Complex irregular FEM meshes are mapped to
graphs [28]

Employs well-developed graph theoretic
approaches for traversing and searching [29]

Uses only vertices connectivity for partitioning
[14]

Could be costly in dynamic mesh partitioning [24]

Tree-based mesh partitioning Tree data structure assist in partitioning meshes
[7]

Commonly employed in dynamic mesh partition-
ing and mesh reordering [7]

Mapping of a mesh to a tree is time consuming [7]

Serial mesh partitioning Small meshes can be partitioned sequentially on
a single machine [30]

No parallel overheads
Simple in coding

Not suitable for large meshes [11]
Wastes computational and storage resources

Parallel mesh partitioning Utilizes available processing power and memory
Appropriate for large graphs for fast partitioning

[11]
Employs well-known parallel libraries for shared

and distributed memory architectures [36]

Parallel overheads due to distribution of tasks [11]
Complex implementation [11]
Load balancing in an evolving distributed mesh is

complicated [11]

Single-objective mesh partitioning Most mesh partitioning is single objective and
single constraint [7]

Easy to find optimal solution [30]
Takes advantage of well-established optimization

theory [20]

Not suitable for multi-objective and multi-con-
straint problems [20]

Multi-objective mesh partitioning Complex problems can be mapped to multi-
objective, multi-constraint problems [20]

Helps in finding an optimal solution in large and
difficult solution space [20]

Implementation is complex
Highly potential for falling into local optima due to

large and multi-facet solution set [20]

Simple mesh partitioning Easy to program and modify
Easy to debug
Less time consuming
Very suitable for dynamic mesh partitioning [16]

May compromise quality of partitioning [16]

Complex mesh partitioning Produces good partitioning results [17] Complicated and requires longer time for execution
[17]

Hard to code and debug [14]
Mesh reordering Improves performance for distributed irregular

meshes by increasing cache hit rate [7]
Time complexity is comparable to multilevel

mesh partitioning [7]

May not give significant results for regular meshes
[7]

Author's personal copy

Mesh Partitioning and Efficient Equation Solving Techniques by Distributed Finite Element…

1 3

References

 1. Hussain M, Kavokin A, (2009) A 2D parallel algorithm using
MPICH for calculation of ground water flux at evaporation from
water table. In: proceedings of FIT’09, Abbottabad.

 2. Hussain M, (2011) ALE moving mesh generation and high per-
formance implementation using OpenMP and MPI libraries for
FSI and Darcy flow problems, PhD Thesis, Faculty of Computer
Science and Engineering, Ghulam Ishaq Khan Institute

 3. Hussain M, Kavokin A (2012) A calculation of 3D model of
ground water flux at evaporation from water table using parallel
algorithm—MPICH. Int J Math Phys 3(2):128–132

 4. Salmon JK (1991) Parallel Hierarchical N-Body Methods,” PhD
Thesis, California Institute of Technology

 5. Keyser JD, Roose D (1992) Grid partition by inertial recursive
bisection. Department of Computer Science, K. U. Leuven,
Leuven

 6. LaSalle D, Karypis G (2013) Multi-threaded graph partition-
ing. 27th IEEE international parallel and distributed processing
symposium

 7. Karypis G, Kumar V (1996) Parallel multilevel k-way parti-
tioning scheme for irregular graphs. In: Proceedings of IEEE
Supercomputing

Table 4 Properties of numerical equation solvers

Type of equations Approach Methods Properties

Linear Direct approach for dense matrices [39] Gaussian elimination—LU factoriza-
tion Requires

2

3
n3 flops in transforming matrix

into echelon form
Gaussian elimination—Cholesky

decomposition Requires
n3

3 flops and exploits symmetric
positive definite property of the stiff-
ness matrix

Gauss–Jordan method
Requires

4

3
n3 flops, twice as many as

Gaussian elimination due to transfor-
mation of stiffness matrix into reduced
echelon form

Direct approach for sparse matrices Gaussian elimination For sparse matrix the time complexity
reduces to O

(
n1.5

)
 for 2D and O

(
n2
)
 for

3D meshes
Iterative approach for large sparse

matrices
Jacobi method Time complexity is O

(
n2
)
, solution may

diverge if the stiffness matrix is not
strictly diagonally dominant [40]

Gauss–Seidel method -ditto-
Richardson method Guarantees to converge if the norm of

I − �K is less than 1 for a stiffness
matrix Kan arbitrary constant � [40]

Conjugate gradient method Faster than gradient descent method,
converges in n steps, may take more
than n steps or fail due to round off
errors [40]

Preconditioned conjugate gradient
method

Preconditioning improves convergence
speed and stability [7]

Nonlinear Iterative approach for large sparse
matrices

Newton–Raphson method Requires to compute derivatives, con-
verges very fast if

||||
f
��
(x)

f
�
(x)

|||| is not too large
for a variable x [46]

Secant method Faster and more stable than Newton
method and does not require deriva-
tives, requires two initial points [46]

Regula–Falsi method Unlike Newton and secant methods root
bracketing is guaranteed here [46]

Lagrange multiplier method Constrained optimization that works if
critical points (maxima or minima)
exist [47]

Augmented Lagrange multiplier Enjoys well established unconstrained
optimization methods, however,
the penalty coefficient should not
increase without bound, otherwise, the
unconstrained problem will become
ill-conditioned [49]

Author's personal copy

 S. U. Ansari et al.

1 3

 8. Gilbert JR, Miller GL, Teng SH,(1995) Geometric mesh parti-
tioning: implementation and experiments. In: proceedings of the
9th international parallel processing symposium, IEEE Com-
puter Society Press, 418–427

 9. Flaherty JE, Loy RM, Shephard MS, Szymanski BK, Teresko
JD, Ziantz LH (1997) Adaptive local refinement with octree
load balancing for the parallel solution of three-dimensional
conservation laws. J Parallel Distrib Comput 47(2):139–152

 10. Karypis G, Kumar V (1998) A parallel algorithm for multi-
level graph partitioning and sparse matrix ordering. J Parallel
Distrib Comput 48:71–85

 11. Schloegel K, Karypis G, Kumar V (2002) Parallel static and
dynamic multi-constraint graph partitioning. Concurr Comput
14:219–240

 12. Boman EG, Catalyurek UV, Chevalier C, Devine KD, Safro I,
Wolf MM (2009) Advances in parallel partitioning, load bal-
ancing and matrix ordering for scientific computing. J Phys
180:12008

 13. Karypis G, Schloegel K (2013) PARMETIS: parallel graph par-
titioning and sparse matrix ordering library, version 4.0. Univer-
sity of Minnesota, Minneapolis

 14. Hussain M, Abid M, Ahmad M, Hussain SF (2013) A parallel
2D stabilized finite element method for darcy flow on distributed
systems. World Appl Sci J 27(9):1119–1125

 15. George A, Liu JW (1981) Computer solution of large sparse pos-
itive definite systems. Prentice-Hall, Upper Saddle River

 16. Farhat C (1988) A simple and efficient automatic FEM domain
decomposer. Comput Struct 28(5):579–602

 17. Pothen A, Simon HD, Liou K (1990) Partitioning sparse matri-
ces with eigenvectors of graphs. SIAM J Matrix Anal Appl
11(3):430–452

 18. Karypis G, Kumar V (1998) Multilevel k-way partition-
ing scheme for irregular graphs. J Parallel Distrib Comput
48:96–129

 19. Karypis G, Kumar V (1999) A fast and high quality multilevel
scheme for partitioning irregular graphs. SIAM J Sci Comput
20(1):359–392

 20. G. Karypis, V. Kumar (1998) Multilevel algorithm for multi-
constraint graph partitioning.In: proceedings of ACM/IEEE on
Supercomputing, 1–13

 21. Hussain M, Abid M, Ahmad M (2012) Stabilized mixed finite
elements for Darcy’s law on distributed memory systems. In:
proceedings of international symposium on frontiers of compu-
tational sciences, Islamabad. pp. 39–47

 22. Chamberlain BL (1998) Graph partitioning algorithms for dis-
tributing workloads of parallel computations. Technical Report
UW-CSE-98-10-03, University of Washington

 23. Karypis G, Kumar V (1999) Parallel Multilevel k-way partition-
ing scheme for irregular graphs. SIAM J Comput 41(2):278–300

 24. Warren MS, Salmon JK (1993) A parallel hashed oct-tree
N-body algorithm. In: proceedings of supercomputing’93, ACM
New York, NY,pp. 12–21

 25. Flaherty JE, Loy RM, Ozturan C, Shephard MS, Szymanski BK,
Teresko JD, Ziantz LH (1998) “Parallel structures and dynamic
load balancing for adaptive finite element computation”. Appl
Numer Math 26(1): 241–263

 26. TU T, O’Hallaron DR, Ghattas O, Scalable parallel octree mesh-
ing for terascale applications. In: proceedings of ACM/IEEE
SC05, 2005

 27. Mitchell WF (2007) A refinement-tree based partitioning method
for dynamic load balancing with adaptively refined grids. J Par-
allel Distrib Comput 67(4):417–429

 28. Pellegrini F (2011) Current challenges in parallel graph parti-
tioning. C R Mecanique 339:90–95

 29. Bichot E, Siarry P (2013) Graph partitioning. Wiley, Hoboken,
pp. 81–114

 30. Hendrickson B, Leland R (1995) An improved spectral graph
partitioning algorithm for mapping parallel computations. SIAM
J Sci Comput 16(2):452–469

 31. Bui T, Jones C (1993) A heuristic for reducing fill in sparse
matrix factorization. In: proceedings of the 6th SIAM conference
on parallel processing for scientific computing, pp. 445–452

 32. Barnard ST (1995) A fast multilevel implementation of recursive
spectral bisection for partitioning unstructured problems 1995

 33. Barnard ST, Simon HD (1994) A fast multilevel implementation
of recursive spectral bisection for partitioning unstructured prob-
lems. Concurr Pract Exp 6(2):101–117

 34. Luby M (1986) A simple parallel algorithm for the maximal
independent set problem. SIAM J Comput 15:1036–1053

 35. George A (1973) Nested dissection of a regular finite element
mesh. SIAM J Num Anal 10:345–363

 36. Grama A, Gupta A, Karypis G, Kumar V, (2003) Introduction to
parallel computing. 2nd edn Addison-Wesley, Boston

 37. Korošec P, Šilc J, Robič B (2004) Solving the mesh-partition-
ing problem with an ant-colony algorithm. Parallel Comput
30(5–6):785–801

 38. K. Taškova, P. Korošec, J. Šilc (2008) A distributed multilevel
ant colonies approach. Informatica. 32(3):307–317

 39. Davis TA (2006) Direct methods for sparse linear systems
SIAM, Philadelphia

 40. Saad Y (2003) Iterative methods for sparse linear systems.
SIAM, Philadelphia

 41. Ansari SU, Hussain M, Rashid A, Mazhar S, Ahmad SM (2015)
Stabilized mixed galerkin method for transient analysis of Darcy
flow. ICMSAO’15, Istanbul pp. 27–29

 42. Hussain M, Ahmad M, Abid M, Khokhar A (2009) Implementa-
tion of 2D parallel ale mesh generation technique in fsi problems
using openmp. In: proceedings of fit’09, Abbottabad

 43. Hussain M, Abid M, Ahmad M, Khokhar A, Masud A (2011) A
parallel implementation of ALE moving mesh technique for FSI
Problems using OpenMP. Int J Parallel Progr 30:717–745

 44. Muhammad A, Khan A, Nash D, Hussain M, Wajid HA (2015)
Simulation of optimized bolt tightening strategies for gasketed
flanged pipe joints. In: proceedings of 14th International Confer-
ence on Pressure Vessel Technology, 23–26 September

 45. Muhammad A, Khan A, Hussain M, Wajid HA (2015)
Optimized bolt tightening procedure for different tighten-
ing strategies—FEA study. Proc Inst Mech Eng Part E.
doi:10.1177/0954408915589687

 46. Woodfords C, Philips C, (2012) Numerical methods with worked
examples: Matlab edition. 2nd ed, Springer, Dordrecht

 47. Lagrange JL (1811) Mécanique Analytique sect. IV 2 vol. Paris
 48. Masud A, Bhagvanwala M, Khurram RA (2005) An adaptive

mesh rezoning scheme for moving boundary flows and fluid-
structure interaction. Comput Fluids 36:77–91

 49. Glowinski R (2008) Numerical methods for nonlinear variational
problems Springer, Berlin/Heidelberg

 50. Hendrickson B, Devine K (2000) Dynamic load balancing in
computational mechanics. Comput Methods Appl Mech Eng
184(2–4):485–500

 51. Schamberger S, Wierum JM (2005) Partitioning finite element
meshes using space-filling curves. Future Gener Comput Syst
21:759–766

 52. Ansari SU, Hussain M, Rashid A, Mazhar S, Ahmad SM (2015)
Parallel stabilized mixed galerkin method for three-dimensional
Darcy flow using openMp. NSEC Islamabad, Dec 17

 53. Kaliakin VN (2001) Introduction to approximate solution tech-
niques. In Numerical modeling, and finite element methods CRC
Press

Author's personal copy

http://dx.doi.org/10.1177/0954408915589687

	Mesh Partitioning and Efficient Equation Solving Techniques by Distributed Finite Element Methods: A Survey
	Abstract
	1 Introduction
	2 Mesh Partitioning Techniques
	2.1 Spatial Mesh Partitioning
	2.1.1 Recursive Orthogonal Bisection
	2.1.2 Recursive Inertial Bisection
	2.1.3 Recursive Circle Bisection
	2.1.4 Tree-Based Partitioning

	2.2 Non-spatial Mesh Partitioning
	2.2.1 Single-Level Graph Partitioning
	2.2.2 Multilevel Graph Partitioning

	2.3 Solving System of Algebraic Equations
	2.3.1 Linear System of Equations
	2.3.2 Nonlinear System of Equations

	2.4 Discussion
	2.4.1 Static Versus Dynamic Mesh Partitioning
	2.4.2 Spatial Versus Non-spatial Mesh Partitioning
	2.4.3 Graph Versus Tree Data Structures
	2.4.4 Single Level Versus Multilevel Partitioning
	2.4.5 Serial Versus Parallel Partitioning
	2.4.6 Single-objective Versus Multi-objective Partitioning
	2.4.7 Local Versus Global Partitioning
	2.4.8 Computation Versus Communication
	2.4.9 Summary of Mesh Partitioning Techniques
	2.4.10 Equation Solvers Selection
	2.4.11 Equation Solvers’ Properties

	References

