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A B S T R A C T

Neuroimaging has made it possible to measure pathological brain changes associated with Alzheimer's disease
(AD) in vivo. Over the past decade, these measures have been increasingly integrated into imaging signatures of
AD by means of classification frameworks, offering promising tools for individualized diagnosis and prognosis.
We reviewed neuroimaging-based studies for AD and mild cognitive impairment classification, selected after
online database searches in Google Scholar and PubMed (January, 1985–June, 2016). We categorized these
studies based on the following neuroimaging modalities (and sub-categorized based on features extracted as a
post-processing step from these modalities): i) structural magnetic resonance imaging [MRI] (tissue density,
cortical surface, and hippocampal measurements), ii) functional MRI (functional coherence of different brain
regions, and the strength of the functional connectivity), iii) diffusion tensor imaging (patterns along the white
matter fibers), iv) fluorodeoxyglucose positron emission tomography (FDG-PET) (metabolic rate of cerebral
glucose), and v) amyloid-PET (amyloid burden). The studies reviewed indicate that the classification frame-
works formulated on the basis of these features show promise for individualized diagnosis and prediction of
clinical progression. Finally, we provided a detailed account of AD classification challenges and addressed some
future research directions.

Introduction

Alzheimer's disease (AD), the most prevalent form of dementia, is
expected to affect 1 out of 85 people in the world by the year 2050
(Brookmeyer et al., 2007). The pathophysiology of AD is increasingly
becoming clearer. The brain of an AD patient accumulates abnormal
proteins (Aβ and tau) in the form of amyloid plaques and neurofi-
brillary tangles, eventually resulting in loss of neurons (Frisoni et al.,
2010; Jagust, 2013). Brain changes due to AD occur even before
amnestic symptoms appear (Buckner, 2004), and occur in a pattern
that typically includes the temporal lobe and hippocampus (Braak and
Braak, 1991). It has been suggested that this inevitable atrophy can be
a valuable marker of neurodegeneration (Frisoni et al., 2010), as

measured with structural magnetic resonance imaging (sMRI).
Further alterations in function, connectivity and metabolism can be
detected using functional MRI (fMRI) (Agosta et al., 2012;
Binnewijzend et al., 2012; Dennis and Thompson, 2014; Fan et al.,
2011; Fox and Raichle, 2007), and fluorodeoxyglucose positron-emis-
sion tomography (FDG-PET) (Gray et al., 2012; Padilla et al., 2012;
Pagani et al., 2015; Teipel et al., 2015; Toussaint et al., 2012).
However, the subtleties of the changes in early AD stages make it
difficult to distinguish patterns easily by conventional radiologic read-
ings or even by quantitative analysis. Thus, it remains challenging to
establish reliable markers for diagnosing and monitoring disease
progression in the early stages and on an individual basis.

Numerous neuroimaging studies have used region of interest
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(ROI)-types of analyses to investigate subtle changes associated with
AD (Chetelat and Baron, 2003; Lerch et al., 2008). Such studies rely
solely on prior knowledge to guide the selection of ROIs and features,
thus ignoring brain changes outside the studied region(s) and failing to
discover new knowledge. Machine learning offers a systematic ap-
proach in developing sophisticated, automatic, and objective classifica-
tion frameworks for analyzing high-dimensional data and can learn
complex and subtle patterns of change across various imaging mod-
alities (Sajda, 2006). Typically, a classification framework includes at-
least feature extraction and classification algorithm to build predictive
models that facilitate the automation of medical decision support
(Chiang and Pao, 2016) and provide increased objectivity in these
decisions. Furthermore, classification frameworks can be used to
develop imaging markers or indices (Davatzikos et al., 2008) with high
sensitivity and specificity in individuals (Sajda, 2006) that can sum-
marize the imaging profile of a subject into a single meaningful value
(Habes et al., 2016b). This creates a more individualized, patient-
tailored approach (Ithapu et al., 2015), which is imperative in the
current age of personalized medicine because it allows further con-
sideration of genetic or life-style risks, by utilizing advanced computa-
tional power (Habes et al., 2016a, 2016b, 2016c).

In recent years, a large body of research has been published on
neuroimaging-based computer-aided classification of AD and its pro-
dromal stage, mild cognitive impairment (MCI). Motivated by this
rapid proliferation of AD/MCI classification studies and the lack of
literature summarizing different AD-related features as extracted from
neuroimaging data and classification algorithms, we present an over-
view of pertinent advances in this field. We summarize key represen-
tative studies on neuroimaging-based classification of AD/MCI and
provide a brief account of the main aspects of these studies, such as
study population, type of features, the adopted classification algorithm,
and the reported classification success rates. Furthermore, we highlight
several bottlenecks (i.e. limited sample size and variability in data
settings across the different studies) and discuss the generalizability
and reproducibility of existing AD classification studies, as well as the
important and largely unexplored issue of heterogeneity in AD.

Recent review papers (Arbabshirani et al., 2017; Falahati et al.,
2014) reported studies on MRI- and multimodality-based classification
of AD and MCI, limiting AD classification to MRI or its combination
with other modalities only. Pathological brain changes related to AD
can be captured via various other independent imaging modalities,
such as FDG-PET and amyloid-PET, therefore, a comprehensive review
on AD classification should also include studies using FDG-PET and

amyloid-PET only. This review is further unique in that it focuses
exclusively on those studies that have extensively leveraged cross-
validation strategies to estimate the performance of their classification
frameworks. Cross-validation is generally designed to achieve inde-
pendent training and test data for a classification algorithm and
defined as split the data once (split-in-train-test) or several times (k-
fold cross-validation) to obtain an unbiased estimate of the classifica-
tion performance of the algorithm and avoid over fitting (Arlot and
Celisse, 2010; Kohavi, 1995). In the split-in-train-test, data is ran-
domly divided into independent training and test subsets, optimally
with matched demographic characteristics. The training subset is used
solely for the learning procedure of the classification algorithm and the
test subset is used to estimate the performance of the trained
classification algorithm. In k-fold, data is divided into k-folds and a
classification algorithm is tested on kth fold after being trained on k-1
folds in kth iteration. Furthermore, we provide in-depth detail about
AD-related feature extraction methods from various neuroimaging
modalities, important information that is mostly lacking in existing
review papers.

Selection criteria

We searched in PubMed and Google Scholar, from January 1985 to
June 2016, and identified 409 studies based on the given search
criteria. We included original peer-reviewed research studies that
exclusively used cross-validation strategies to estimate the performance
of their classification frameworks. In addition, studies conducted for
method comparisons and studies not focusing primarily on AD
classification were excluded from this review. Finally, this criterion
resulted in 81 studies that were reviewed and presented here. A more
thorough explanation of the search and screening process with flow
chart figure, and databases generated from the search in Google
Scholar and PubMed are provided in the Supplementary Material.

Classification frameworks for Alzheimer's disease and its
prodromal stages

Over the past decade, classification frameworks have been used
successfully to analyze complex patterns in neuroimaging data with a
view to the classification of AD and MCI subjects. A classification
framework is comprised of four major components: feature extraction,
feature selection, dimensionality reduction, and feature-based classifi-
cation algorithm. Feature extraction and classification algorithm are

Fig. 1. A top-level layout of neuroimaging-based classification framework for AD classification.
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the minimally required components, as shown in Fig. 1, whereas other
components can be applied as needed. The studies having minimally
required components of classification framework were considered
potential candidates for inclusion in the paper provided meeting other
criteria. In the feature-extraction process, AD-related features from
various neuroimaging modalities, such as structural MRI, functional
MRI, diffusion tensor imaging (DTI), amyloid-PET, and FDG-PET, are
extracted from the training subjects. The term ‘features’ refers to the
post-processing applied on raw medical imaging data to derive more
informative measures. The examples of such derived measures include
regional tissue densities, regional cortical thickness, etc. These derived
measures can vary from millions (when all the voxels are used as
features) to a few (when a few representative measures are extracted
from the brain). The features extracted from various modalities can be
used in isolation or combined to make use of the complementary
information provided by several modalities. A classification algorithm
(predictive model) is then trained on the extracted features to provide
diagnostic support in predicting cognitively normal (CN) and diseased
subjects.

In the aforementioned classification framework, the selection of an
appropriate modality for obtaining imaging data and accurate feature
extraction for AD classification is often more important than the
selection of the underlying classification algorithms in order to achieve
higher prediction rates (Sabuncu and Konukoglu, 2015). Therefore, we
provided more details on feature extraction for the included studies in
this review. Overall, the paper is divided into various sections, where
each section focuses on features extracted from one particular imaging
modality, such as structural MRI, functional MRI, DTI, and PET. A
section on multimodal AD/MCI classification studies, which describes
how features extracted from various imaging modalities are combined
to utilize their complementary information, is included at the end.

Structural MRI-based studies

Cerebral neurodegeneration is characterized by early damage to
synapses, followed by degeneration of axons and ultimately, atrophy of
the dendritic tree and perikaryon (Serrano-Pozo et al., 1101). This
neurodegeneration process is more severe in certain parts of the brain,
such as the right and left hippocampus, temporal and cingulate gyri,
and precuneus (Baron et al., 2001; Busatto et al., 2003; Frisoni et al.,
2002; Ishii et al., 2005). The inevitable atrophy, caused by neurode-
generation, is generally measured using structural MRI, and serves as a
valuable marker of the stage and aggressiveness of the neurodegen-
erative aspect of the AD pathology in the individual (Frisoni et al.,
2010; Vemuri and Jack, 2010). The atrophic process in these regions
leads to profound structural changes in the brain, such as thinning of
the cortical surface, structural variation in several brain regions and
variation in the regional tissue densities, and have been demonstrated
in several neuroimaging-based studies of AD classification. A top-level
breakdown of these studies is shown in Fig. 2. Three main feature
extraction methods for assessing structural variation are considered: i)
density maps, ii) cortical surface, and iii) pre-defined regions-based
methods.

Density map-based methods
Density map-based methods quantify patterns of atrophy by

utilizing density maps of white matter (WM), grey matter (GM), and
cerebrospinal fluid (CSF), which are generated by methods such as
voxel-based morphometry (VBM) (Ashburner and Friston, 2000) or
regional analysis of volumes examined in normalized space (RAVENS)
maps (Davatzikos et al., 2001). Depending on how the density maps are
used, these methods can be further divided into two categories: i)
whole density maps as features (DMAF), and ii) reduced density map
features. The studies that fall within these categories are listed in
Table 1.

Whole density maps as features (DMAF)-based methods. This method
is centered on the construction of a feature vector by utilizing the
density maps of WM, GM, or both for classification.

In an earlier study, the GM density map of the entire brain together
with a support vector machine (SVM) achieved promising AD classi-
fication (Kloppel et al., 2008). In that study, relatively lower GM
density was found in the hippocampus of AD subjects, which was a
strong indicator of hippocampal atrophy, consistent with previous
research (Frisoni et al., 2002). In addition, GM maps have been used
for AD classification, by employing a large-scale regularization ap-
proach (Casanova et al., 2011) and spatially augmented linear pro-
gramming boosting method (LPBM) (Hinrichs et al., 2009), and to
predict conversion from MCI to AD, by using SVM (Adaszewski et al.,
2013). Termenon et al., used GM density maps to develop feature
vectors for AD classification (Termenon and Graña, 2012) by employ-
ing a two-stage classification framework, wherein a relevance vector
machine classifier (Tipping, 2001) was used in the first stage. The
subjects that fell into the low confidence interval of the classifier were
used as the input for the second classifier in the prediction. SVM,
nearest neighbor, relevance vector machine, and learning vector
quantization were used as second-stage classifiers, however, SVM was
better. Recently, Moller et al. (2016) also used GM density map for
SVM-based AD classification.

Furthermore, the Jacobian determinants, calculated from these
density maps, have been used as features for predicting conversion
from MCI to AD by using SVM, Bayes statistics, and voting feature
interval classifiers (Plant et al., 2010).

These methods achieved a ≥81% accuracy in AD classification, and
a ≥62% accuracy in prediction of AD conversion. Furthermore, the two-
stage framework proposed by Termenon and Graña (2012) demon-
strated superior classification accuracy (from 77% to 87%) than its
single-stage-based counterpart.

Reduced density map feature-based methods. DMAF-based methods
suffer the drawback of dimensionality, as the numbers of features are
typically larger than, or comparable to, the number of the available
subjects. When the number of features is high relative to the number of
subjects in the training set, it is possible that classification rules
yielding high accuracy on the training set were originated only by
chance. This can lead many classification algorithms to select
classification rules that could fail to generalize to new data (Vapnik,
1999). Consequently, features have been reduced using supervised or
unsupervised feature-reduction methods, or they have been extracted
from pre-defined atlases and adaptive regions in order to reduce
dimensionality.

Supervised/unsupervised feature-reduction-based methods. These
methods essentially focus on distilling large-sized density maps to fewer,
meaningful features in a supervised or unsupervised fashion. Among the
unsupervised methods, Salvatore et al. used principal component analysis
(PCA) to reduce the dimensions of WM and GM density maps. The reduced
density maps were used for SVM-based AD classification and prediction of
conversion from MCI to AD (Salvatore et al., 2015). In addition, Liu et al.
(2013) used local linear embedding method to transform multivariate
regional brain volume and cortical thickness MRI data to a locally linear
space, with fewer dimensions, while also utilizing the global nonlinear data
structure. The embedded brain features were then used to train classification
algorithms such as regularized logistic regression (RLR), SVM, and linear
discriminant analysis (LDA).

On the other hand, Beheshti and Demirel (2015) proposed reduc-
tion of the dimensions of GM maps in a supervised fashion. They used
the intensity distribution of voxels of GM maps, rather than using the
intensities of all the voxels of GM maps, as features. The optimal
number of bins in the intensity distribution was selected based on the
Fisher criterion maximization between AD and CN subjects, and the
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Fig. 2. A top-level breakdown of structural MRI-based classification studies for AD classification.
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resultant intensity distribution-based features were used for SVM-
based AD classification.

Atlas-based methods. These methods rely on parcellation of brain
image into several anatomical regions based on pre-defined
anatomically labeled atlases (such as automated anatomical labeling
(AAL) atlas (Tzourio-Mazoyer et al., 2002) and laboratory of
neuroimaging (LONI) atlas (Shattuck et al., 2008)), followed by
extraction of features from those particular regions. For example,
Magnin et al., used AAL to parcellate the brain image into 116 regions,
and then used the relative weight of the GM, compared to that of the
WM and CSF, for each parcellated region to develop a feature vector for
SVM-based AD classification (Magnin et al., 2009).

Adaptive-ROI-based methods. Traditionally, atlas-based methods
are used to obtain regional measurement of anatomical features and to
investigate abnormal tissue structures in disease conditions. However,
in practice, prior knowledge of abnormal regions is not always
available. Even when a prior hypothesis can be made about specific
ROIs, a region demonstrating abnormality might be part of a single
ROI, or span multiple ROIs, thereby potentially reducing the
significance of further analysis. Therefore, adaptive ROIs have been
calculated to reduce the dimensions of density maps and to resolve this
issue. Furthermore, depending on the number of sets of adaptive ROIs
that are calculated, these methods can be divided into two categories: i)
single-set adaptive ROIs, and ii) multiple-set adaptive ROIs.

In single-set adaptive ROIs-based methods, subjects are registered
to one particular atlas, and adaptive ROIs and corresponding
regional volumetric measures are calculated in that atlas space. In
earlier work, Fan et al. calculated RAVENS density maps and used a
watershed clustering algorithm-based method (Fan et al., 2007) to
calculate an adaptive set of ROIs for SVM-based AD classification,
using the multi-centric ADNI (Alzheimer's disease neuroimaging
initiative (Weiner et al., 2015)) dataset. They reported a high cross-
validated classification accuracy of 94.30%, with a pattern involving
many temporal lobe GM regions, peri-hippocampal WM, and CSF
(Fan et al., 2008a). The trained SVM in this study was used to
determine the spatial pattern of abnormality for recognition of early
AD (SPARE-AD) index, which was later tested independently in CN
and MCI subjects of the Baltimore longitudinal study of aging
(BLSA) (Davatzikos et al., 2011) dataset. In subsequent studies, the
same classification framework was used for MCI classification
(Davatzikos et al., 2008) and prediction of conversion from MCI
to AD (Misra et al., 2009).

In multiple-set adaptive ROIs-based methods, subjects are regis-
tered to multiple atlases, and adaptive ROIs and corresponding
regional volumetric measures are calculated in each atlas space to
overcome the inherent bias associated with one atlas. For example,
Min et al. derived multiple atlases from the non-overlapping
clusters of subjects (Min et al., 2014), obtained using affinity
propagation (Frey and Dueck, 2007). They registered subjects to
the atlases and adaptively calculated a set of ROIs and volumetric

Table 1
A brief description of the datasets used for the validation of density map-based AD classification frameworks.

Study Subjects Type Classification algorithm Database Classification accuracy

AD MCI pMCI sMCI CN AD/CN MCI/CN sMCI/pMCI

(Kloppel et al., 2008) 20 – – – 20 DMAF SVM RM 95.00 – –

(Kloppel et al., 2008) 14 – – – 14 DMAF SVM DRCUCL 92.90 – –

(Kloppel et al., 2008) 33 – – – 57 DMAF SVM RM 81.10 – –

(Casanova et al., 2011) 49 – – – 49 DMAF LSR ADNI 85.70 – –

(Hinrichs et al., 2009) 89 – – – 94 DMAF LPBM ADNI 82.00 – –

(Termenon and Graña, 2012) 49 – – – 49 DMAF RVM, SVM OASIS 83.00 – –

(Adaszewski et al., 2013) 108 – 142 61 137 DMAF SVM ADNI – – 62.00
(Plant et al., 2010) 32 – 9 15 18 DMAF SVM, BS, VFI CPLMU 92.00 – 75.00
(Moller et al., 2016) 84 – – – 94 DMAF SVM ACVUMC, ACEUMC 88.00 – –

(Liu et al., 2013) 86 – 97 93 137 SUFR RLR, SVM, LDA ADNI 90.00 – 68.00
(Salvatore et al., 2015) 137 – 76 134 162 SUFR SVM ADNI 76.00 72.00a 66.00
(Beheshti and Demirel, 2015) 130 – – – 130 SUFR SVM ADNI 89.65 – –

(Magnin et al., 2009) 16 – – – 22 Atlas SVM Internal 94.50 – –

(Fan et al., 2008a) 56 88 – – 66 S-ROI SVM ADNI 94.30 – –

(Davatzikos et al., 2008) – 15 – – 15 S-ROI SVM BLSA – 90.00 –

(Misra et al., 2009) 56 – 27 76 66 S-ROI SVM ADNI – – 81.50
(Min et al., 2014) 97 – 117 117 128 M-ROI SVM ADNI 91.64 – 72.41
(Liu et al., 2015) 97 – 117 117 128 M-ROI SVM ADNI 92.51 – 78.88

SUFR=Supervised/unsupervised feature reduction
S(M)-ROI=Single(Multiple)-set adaptive ROIs
LSR=Large scale regularization
VFI=Voting feature intervals
BS=Bayes statistics
OASIS=Open access series of imaging initiative (Chan et al., 2003)
RM=Rochester, Minnesota, USA
DRCUCL=Dementia research center, University College London
CPLMU=Clinic of psychiatry at the Ludwig Maximilian university, of Munich
ACVUMC=Alzheimer center of the VU university medical center
ACEUMC=Alzheimer center of the Erasmus university medical center
In all the tables, blank entry (–) means information was not provided by the authors or is irrelevant.

a pMCI/CN
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features in each atlas space. The top-most K discriminating features
calculated from each atlas space were combined for SVM-based
classification. Subsequently, Liu et al. argued that the features
extracted from K sets of adaptive ROIs are different representations
of the same subject (Liu et al., 2015), and should not be con-
catenated, as in a previous study (Min et al., 2014). To resolve this,
Liu et al. (2015) registered subjects to different selected atlases and
extracted features from adaptive regions of each atlas-registered
image, viewing that image as the main source, and all other atlas
registered-images as adjunctive sources. SVM was separately
trained on features extracted from each set and the results of
multiple sets were combined using majority voting.
The multiple-set adaptive ROIs-based methods were quite effective,
and improved AD/CN classification from 84.18% to 92.51% (Liu
et al., 2015) and progressive MCI (pMCI)/stable MCI (sMCI)
classification from 70.06% to 78.88% (Liu et al., 2015) compared
to single-set adaptive ROIs-based methods.

Cortical surface-based
AD patients generally show changes in temporal and parietal

regions of the cortical surface (Bakkour et al., 2009; Dickerson et al.,
2009, 2011). Although these changes are not easily visible or measure-
able in the early stages of AD, classification frameworks have been able
to detect subtle changes in the cortical surface by analysis of complex
cortical surface data, in a way that is complementary to regional
volumetric maps extracted in a voxel-wise manner. Cortical surface
measures are extracted from all the vertices of a surface. These
measures are either used directly or are reduced by applying feature
reduction methods, thereby leading to two main categories: i) vertices
as features-based methods, and ii) reduced vertices as features-based
methods. The studies of AD diagnosis support employing cortical
surface-based features are listed in Table 2.

Vertices as features-based methods. This family of AD classification
frameworks solely relies on the features calculated from all the vertices
of a cortical surface. For instance, Li et al. calculated a variety of
morphological features, including volumetric (cortical thickness,
surface area, and GM volume) and geometric (sulcal depth, metric

distortion, and mean curvature) measures, at each vertex on the pial
surface (Li et al., 2014b), which were used for SVM-based MCI
classification.

Reduced vertices as features-based methods. The use of cortical
surface features of all the vertices suffers from the same
dimensionality drawback, for reasons similar to those mentioned in
Section Reduced density map feature-based methods. Consequently,
these features have either been reduced by means of feature-reduction
methods, or extracted from regions of pre-defined atlases.

Supervised/unsupervised feature-reduction-based methods. In
these methods, the dimensions of long feature vector comprising
features of all the vertices of the brain are reduced by applying
supervised or unsupervised feature reduction methods. For example,
Cho et al. (2012) converted thickness data to a frequency domain and
achieved lower dimensionality by filtering out high-frequency (noise)
components. They employed an incremental learning-based LDA for
reduced dataset-based AD classification. Park et al. addressed this issue
by modeling the cortical surface using three-dimensional meshes and
extracted cortical thickness parameterized by these meshes (Park et al.,
2012) for SVM-based AD and MCI classification. Later, Park et al.
(2013) applied this classification framework to longitudinal data for the
early detection of AD. They trained SVM on MCI and CN subjects, and
tested it on the subjects who converted to AD, using the images of the
subjects taken one time-point before the actual conversion. They
achieved promising early prediction of conversion (83%) from MCI
to AD.

Atlas-based methods. In these methods, the original brain images
are registered to certain standardized stereotaxic spaces (Fischl et al.,
1999), and cortical maps/features are computed (Fischl and Dale,
2000; Jones et al., 2000; MacDonald et al., 2000) and tessellated into
various regions using existing atlas templates (Desikan et al., 2006).
Unlike the structural templates discussed in Section Reduced density
map feature-based methods, which are used in the volume space, these

Table 2
A brief description of the datasets used for the validation of cortical surface-based AD classification frameworks.

Study Subjects Type Classification algorithm Database Classification accuracy

AD MCI pMCI sMCI CN AD/CN AD/MCI MCI/CN sMCI/pMCI

(Li et al., 2014b) – 24 – – 26 All vertices SVM XWH – – 80.00 –

(Cho et al., 2012) 128 – 72 131 160 RV LDA ADNI 88.33 – – 71.21
(Park et al., 2012) 25 25 – – 50 RV SVM OASIS 90.00 90.00 86.00 –

(Park et al., 2013) – 30 12 – 30 RV SVM ADNI – 83.00a 90.00 –

(Desikan et al., 2009) 65 57 – – 94 Atlas LR ADNI 95.00 – 95.00 –

(McEvoy et al., 2009) 84 175 – – 139 Atlas LDA ADNI 89.00 – – –

(Oliveira et al., 2010) 14 – – – 20 Atlas SVM DPUSP 88.20 – – –

(Eskildsen et al., 2013) 194 – 340 134 226 Atlas LDA ADNI 86.70 – – 71.10
(Eskildsen et al., 2013) – – 29 (36) 134 – Atlas LDA ADNI – – – 77.30
(Eskildsen et al., 2013) – – 61 (24) 134 – Atlas LDA ADNI – – – 73.00
(Eskildsen et al., 2013) – – 128 (12) 134 – Atlas LDA ADNI – – – 74.50
(Eskildsen et al., 2013) – – 122 (06) 134 – Atlas LDA ADNI – – – 80.90
(Wee et al., 2013) 198 – 89 111 200 Atlas Multi-kernel SVM ADNI 92.35 79.24 83.75 75.05
(Lillemark et al., 2014) 114 240 – – 170 Atlas LDA ADNI 87.70b 76.60b 78.40b –

RV=Reduced vertex-wise
XWH=Xuan Wu Hospital, Beijing, China
DPUSP=Department of Psychiatry, University of S̃ao Paulo, S̃ao Paulo, Brazil
The first entry for Eskildsen et al. (2013) shows the classification accuracy by using all the sMCIs and pMCIs. The remaining entries show the classification between sMCI and different
sets of pMCI subjects, divided according to their time of conversion from sMCI to pMCI. Numbers of months are shown in parenthesis against pMCI subjects.

a prediction of conversion from MCI to AD
b Shows AUC
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atlas templates are used in the surface space. The features of the
tessellated regions are used in feature vector development, which then
is used in classification.

Desikan et al. used average cortical thickness of all the tessellated
regions for MCI and AD classification (Desikan et al., 2009) using
logistic regression (LR). The cortical thickness in the entorhinal cortex
and supramarginal gyrus proved to be a better predictor of MCI than
the cortical thickness of other regions. Similarly, Oliveira et al. (2010)
used regional thickness measures and the average thickness of the
entire brain for AD classification by means of SVM. They found that the
average cortical thickness of the entire brain was a better predictor of
AD than the regional thickness features. Wee et al. (2013) used
regional thickness measures, cerebral cortical GM and associated
WM volumes, and correlative features, which were obtained based on
the similarity of cortical thickness between pairs of brain regions.
Features were first selected using t-tests, and later using minimum-
redundancy and maximum-relevance (mRMR) (Peng et al., 2005) in
conjunction with SVM recursive-feature elimination (SVM-RFE).
Multi-kernel SVM was used for classification. McEvoy et al. (2009)
also used average regional cortical thickness and volumetric measures
for LDA-based AD classification and prediction of conversion fromMCI
to AD. Lillemark et al. (2014) used the proximity between the center of
mass and percentage surface connectivity of different brain regions as
features for LDA-based AD and MCI classification.

Recently, Eskildsen et al. (2013) investigated the prediction of AD
conversion by measuring regional thickness at various stages of MCI
conversion to AD. To this end, pMCI subjects were categorized based
on time to conversion to AD (6, 12, 24, or 36 months), and each
category was classified against sMCI subjects. Features were reduced
using mRMR, and LDA was used to determine the classification
accuracy. The classification based on stage-specific categories of
pMCI subjects demonstrated better accuracy than the overall classifi-
cation of pMCI and sMCI subjects.

In addition, the efficacy of regional thickness measures was
investigated using orthogonal partial least-squares of the latent struc-
tures for AD classification in two independent cohorts (ADNI and
AddNeuroMed (Lovestone et al., 2009, 2007)) and a pool of these
cohorts (ADNI+AddNeuroMed) (Westman et al., 2011). Results de-
monstrated similar patterns of atrophy in two individual cohorts,
showing that the key regions involved in AD classification were similar
in both cohorts. They further proved similarity in the patterns of
atrophy through training the classification algorithm on one cohort and
testing it on the other. For example, AD classification derived from
training on the AddNeuroMed cohort and testing on the ADNI cohort,
and vice versa, led to accuracies of 86.0% and 83.40%, respectively. The

individual and pooled cohorts were further used to predict the
conversion from MCI to AD. For instance, the classification algorithm
trained on the combined cohort classified 71% of the pMCI as AD-like
and 60% of the sMCI as CN-like.

The reduced vertices as features-based methods demonstrated
better classification accuracy than raw vertices as feature-based
methods as shown by improvement of 10–13% for different subject
groups (Park et al., 2012). Moreover, the supervised/unsupervised
feature reduction-based methods offered better classification accuracy
than atlas-based methods. An overall improvement of 2–8% over atlas-
based methods was seen for different subject groups (86.67–88.33%
for AD/CN (Cho et al., 2012) and 65.22–71.21% for pMCI/sMCI (Cho
et al., 2012)).

Pre-defined regions-based methods
These methods are based on the prior knowledge of the magnitude

and spatial pattern of AD that were acquired by studies previously
conducted on histological or imaging data (Baron et al., 2001; Frisoni
et al., 2002). Generally, features of some of the important regions that
have shown to contain discriminatory AD-related information are
extracted and used for classification. The datasets and classification
accuracies of the studies using these methods are listed in Table 3.

Hippocampal features. The hippocampus is amongst the few structures
of the medial temporal lobe that undergo severe structural changes in
AD (Braak and Braak, 1991). The structural variation between the
hippocampus of AD and healthy individuals has been studied intensively
(Killiany et al., 2002; Wisse et al., 2014). The geometric properties of the
hippocampus have been exploited as useful biomarkers in a few AD and
MCI classification studies. For example, the shape of the hippocampus,
quantified by spherical harmonics (Gerardin et al., 2009), surface-based
anatomic mesh modeling (Li et al., 2007), statistical shape modeling
(Shen et al., 2012), and large-deformation diffeomorphic metric
mapping and PCA (Wang et al., 2007b), has been shown to be an
effective biomarker for AD and MCI classification. The shape and
volumetric features of the hippocampus have also been combined for
SVM-based AD conversion prediction (Costafreda et al., 2011).
Interestingly, a study demonstrated superiority of hippocampal texture
over reduction in its volume for SVM-based prediction of conversion
from MCI to AD (Sorensen et al., 2016).

Biologically selected features. AD affects brain regions well beyond the
hippocampus, such as atrophy of the entorhinal cortex (Dickerson
et al., 2001), expansion of the ventricles (Ridha et al., 2008), and

Table 3
A brief description of the datasets used for the validation of pre-defined regions-based AD classification frameworks.

Study Subjects Type Classification algorithm Database Classification accuracy

AD MCI pMCI sMCI CN AD/CN MCI/CN sMCI/pMCI

(Wang et al., 2007b) 18 – – – 26 Hippocampus LR ADRC 81.10 – –

(Li et al., 2007) 19 – – – 20 Hippocampus SVM Internal 94.90 – –

(Gerardin et al., 2009) 23 23 – – 25 Hippocampus SVM HCUDC 94.00 83.00 –

(Shen et al., 2012) 99 – – – 138 Hippocampus Bagged SVM ADNI 88.30 – –

(Costafreda et al., 2011) 71 – 22 81 88 Hippocampus SVM AddNeuroMed – – 80.00
(Sorensen et al., 2016) 101 233 93 140 169 Hippocampus SVM ADNI 91.20b 76.40b 74.20b

(Chincarini et al., 2011) 144 – 136 166 189 BSR SVM ADNI 97.00b 92.00a,b 74.00b

(Tang et al., 2015) 175 – 135 87 210 BSR LDA ADNI – – 74.77

BSR=Biologically selected regions
ADRC=Alzheimer disease research center, Washington University School of Medicine, St. Louis, Missouri, USA
HCUDC=Hospital center University De Caen, Caen, France

a pMCI/ CN.
b Shows AUC
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volumetric changes in other subcortical nuclei (amygdala, putamen,
caudate, and thalamus) (Madsen et al., 1312; Visser et al., 1999). The
analysis of structures beyond the hippocampus may not only improve
understanding of the spatial pattern of AD, but may also lead to a more
precise diagnosis. Therefore, features of these biologically selected
regions are sometimes used directly for classification of subjects into
normal and diseased classes. For example, Chincarini et al. (2011) used
the statistical and textural features of the entorhinal cortex, perirhinal
cortex, hippocampus, and parahippocampal gyri. The features of each
region were analyzed with a random forest classifier to extract the
relevant ones, which were subsequently processed with SVM for
prediction of AD conversion. Recently, Tang et al. (2015) used shape
diffeomorphometry of the left and right amygdala, hippocampus,
thalamus, caudate, putamen, globus pallidus, and lateral ventricle for
prediction of AD conversion using LDA.

Functional MRI-based studies

The neurodegenerative process of AD induces changes in functional
connectivity between various regions of the brain (Fransson, 2005;
Wang et al., 2007a). These alterations are generally measured while the
patient is at rest, using resting-state functional MRI (rs-fMRI). Rs-
fMRI, in principle, measures the brain activity by quantifying the blood
oxygen level-dependent signal, whereby an increased oxygen level is
observed in activated regions of the brain due to increased blood flow.
Various rs-fMRI studies have reported the existence of resting-state
networks, which are characterized by spatially coherent, spontaneous
fluctuations in the blood oxygen level-dependent signal and are made
up of regional patterns that are commonly involved in brain functions,
such as attention, sensory, or default mode processing (Fox and
Raichle, 2007; Seeley et al., 2007). A network that is related to AD
and has increasingly received attention is the default mode network
(DMN) (Greicius et al., 2003, 2004) also called the ‘task-negative’
network (anti-correlated to ‘task positive’ network) (Fox et al., 2005;
Fransson, 2005), since its activity increases in the absence of a task. AD
compromises primary brain targets, such as the DMN, by disrupting
their functional activity (He et al., 2007; Li et al., 2002), as well as the
functional connectivity between primary targets and the remaining
parts of the brain (Wang et al., 2007a, 2006). Some studies have
reported that functional changes appear well before the changes in
clinical symptoms become evident (Pievani et al., 2011; Teipel et al.,
2015). However, those studies are rare, and additional studies should
be conducted to test whether functional MRI changes can appear
before structural MRI.

The preliminary evidence of disrupted functional connectivity (Li
et al., 2002; Wang et al., 2007a, 2006), and its association with AD
have led researchers to hypothesize that proper quantification of the
functional connectivity across different brain regions can capture the
global distribution of the abnormalities present in AD, and can further
aid in AD classification (Chen et al., 2011; Jie et al., 2014). Such

quantification involves spatial parcellation of fMRI data according to a
structural brain template, and calculation of pair-wise connectivity
between the activation in all pairs of regions. The connectivity
information, generally defined as the correlation, covariance, or the
mutual information between the fMRI time series of the two regions, is
stored in an n×n matrix for each subject, where n is the number of
brain regions obtained by parcellation. The connectivity information is
then used as input for classification. For example, Chen et al. (2011)
used Pearson correlation coefficient as connectivity metric for Fisher
LDA-based AD and MCI classification. In addition, Challis et al. (2015)
used covariance as a connectivity metric for Gaussian-process, logistic
regression model-based AD and MCI classification. They showed that
the connectivity strength between the medial structures and temporal
and sub-cortical regions best classified MCI, and that the connectivity
strength between the frontal areas and the rest of the brain best
classified AD. It has also been suggested to develop graphs on
connectivity matrices and compute network measures from the graph
instead of using raw connectivity matrices. For example, Jie et al.,
proposed to extract global topology and local connectivity based
features from the graph. The least absolute shrinkage and selection
operator was used for feature selection, while multi-kernel SVM was
used for MCI classification (Jie et al., 2014). Similarly, Khazaee et al.
(2015) computed integration and segregation measures from the
graph, and used Fisher score for feature selection and SVM for AD
classification.

Overall, the functional connectivity-based methods demonstrated
good classification results (97.00% for AD/MCI (Challis et al., 2015)
and 91.90% for MCI/CN (Jie et al., 2014)) (Table 4).

Diffusion tensor imaging (DTI)-based studies

AD is associated with loss of brain barriers that restrict water
motion, thereby compromising the integrity of WM, and leading to
abnormal diffusivity patterns (Xie et al., 2006). DTI is used to
analyze water diffusion at the microstructural level of the brain for
determining the abnormal diffusion pattern of AD. Voxel-based
studies showed that AD patients have reduced fractional anisotropy
(FA) in multiple posterior WM regions (Medina et al., 2006) and
MCI patients have increased mean diffusivity (MD) in the posterior
occipital–parietal cortex, and right parietal supramarginal gyrus
(Rose et al., 2006). ROI-based studies demonstrated higher MD
and/or lower FA in the hippocampus (Fellgiebel et al., 2006;
Kantarci et al., 2001; Muller et al., 2005, 2007) and posterior
cingulate in AD also at preclinical stages (Choo et al., 2010;
Fellgiebel et al., 2005). Interestingly, a previous study suggested
that diffusivity measures of hippocampus are better predictors of
MCI conversion than volume (Fellgiebel et al., 2006). Evidence of
abnormal and complex diffusivity patterns has led to the hypothesis
that these biomarkers can be used for AD classification using
advanced classification framework (Selnes et al., 2013). The studies

Table 4
A brief description of the datasets used for the validation of functional MRI based AD classification frameworks.

Study Subjects Type Classification algorithm Database Classification accuracy

AD MCI CN AD/CN MCI/CN AD/MCI

(Chen et al., 2011) 20 15 20 Connectivity Fisher LDA MDC 82.00a 91.00 –

(Challis et al., 2015) 27 50 39 Connectivity GP-LR Internal – 75.00 97.00

(Jie et al., 2014) – 12 25 Graph measures Multi-kernel SVM BIAC – 91.90 –

(Khazaee et al., 2015) 20 – 20 Graph measures SVM ADNI 100.00 – –

GP-LR=Gaussian-process logistic regression
MDC=Memory disorders clinic, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
BIAC=Brain imaging and analysis center, Duke university, North Carolina, USA

a AD/(MCI+CN)
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using DTI-based features, summarized in Table 5, can be further
divided into three categories, depending on how features are
extracted: i) tractography, ii) connectivity network measures, and
iii) discriminative voxel selection.

Tractography-based methods
In this method, the fibers located by means of tractography are

clustered into various fiber bundles, based on an anatomical atlas. The
located fibers are reduced to a compact, low-dimensional representa-
tion, from which diffusivity measures are calculated for classification.
For example, Nir et al. (2015) used tractography to locate fibers, then
clustered them into 18 fiber bundles based on the 18 regions defined in
Johns Hopkins University probabilistic WM tract atlas. They computed
density maps to quantify the number of fibers passing through each
voxel, and used the shortest path graph search to reduce fiber bundles
to a compact, low-dimensional representation, based on the maximum
density path (MDP). These MDPs were registered across subjects, and
diffusivity measures of FA and MD, computed along all the MDPs, were
used as features for SVM-based AD and MCI classification.

Connectivity network measure-based methods
In this method, DTI images are parcellated into anatomical regions,

and several features are calculated from the fibers within these regions.
Connectivity networks are developed based on these regions (i.e.,
features) and a collection of network measures are derived for
classification. In this context, Wee et al. (2011) parcellated the brain
into anatomical regions, and developed connectivity networks based on
the regional features of fiber count, averages of on-fiber FA, MD, and
three principal diffusivities. Clustering coefficients of all the regions,
computed for all the networks, were used as features. The feature set
was reduced by determining the Pearson correlation coefficient, and
SVM-RFE was used for MCI classification. Recently, Prasad et al.
(2015) adopted the same methodology, and developed two connectivity
networks based on regional features of fiber count, and flow along the
fibers. Raw connectivity matrices and various other network measures,
such as global efficiency, transitivity, path-length, modularity, radius,
and diameter were used for SVM-based classification of early and late
MCI subjects.

Discriminative voxel selection-based methods
In this method, discriminative voxels are selected to reduce the

dimensionality of DTI data, and diffusion measures of selected voxels
are used as features for classification. Dyrba et al. adopted this
approach in two of their studies. In the first study, they used PCA
and an entropy-based information gain criterion for selecting discri-

minative voxels, and used diffusion measures of FA, MD and mode of
anisotropy of the selected voxels as features for SVM-based AD
classification (Dyrba et al., 2013). In the subsequent study (Dyrba
et al., 2015a), they used the same classification framework for
classifying MCI subjects, stratified by their positive or negative amyloid
burden.

Positron-emission tomography (PET)-based studies

The characteristic patterns of glucose metabolism on brain FDG-
PET and of amyloid deposition on amyloid PET can help in differ-
entiating AD from healthy individuals. An association between AD and
hypometabolism was found in several brain regions, such as the
parieto–temporal and posterior cingulate cortices (Mosconi et al.,
2008), and hippocampus (Mosconi et al., 2005). Similarly, AD subjects
compared to healthy individuals have shown higher amyloid burden in
overall cortex and all cortical regions (precuneus, anterior and poster-
ior cingulate, and frontal median, temporal, parietal and occipital
cortex) (Camus et al., 2012). These evidences of the association of
hypometabolism and amyloid burden with AD encouraged the use of
FDG-PET and amyloid PET as a suitable biomarker for AD classifica-
tion.

FDG-PET
Recently, there has been a growing interest in using the cerebral

glucose metabolism rate for AD classification and prediction of
conversion from MCI to AD (Gray et al., 2012; Toussaint et al.,
2012). Four main methods that utilize the cerebral glucose metabolism
rate are considered here: voxels as feature (VAF)-based, discriminative
voxel selection-based, atlas-based, and projection-based methods.
Table 6 lists the studies using these methods, and their datasets and
corresponding classification performance.

VAF-based methods. This set of methods, similar to those discussed
for structural MRI in section Whole density maps as features (DMAF)-
based methods, utilizes the intensity value of all the voxels of an input
PET scan. Hinrichs et al. (2009) adopted this approach for AD
classification using LPBM.

Discriminative voxel selection-based methods. The prominent goal of
these methods is to simultaneously select the informative voxels
(features) used in VAF-based methods. For example, Cabral et al.
(2015) used this method to investigate the prediction of AD conversion
based on FDG-PET images at various time-points. Discriminative

Table 5
A brief description of the datasets used for the validation of DTI based AD classification frameworks.

Study Subjects Type Classification algorithm Database Accuracy

AD MCI pMCI sMCI CN AD/CN MCI/CN sMCI/pMCI

(Nir et al., 2015) 37 113 – – 50 Tractography SVM ADNI 80.60 68.30 –

(Wee et al., 2011) – 10 – – 17 Network SVM BIAC – 88.90 –

(Prasad et al., 2015) 38 – 38 74 50 Network SVM ADNI 78.20 62.80a, 59.20b 63.40

(Dyrba et al., 2013) 137 – – – 143 DVS SVM EDSD 83.00 – –

(Dyrba et al., 2015a) – – 35 35 25 DVS SVM EDSD – 77.00 68.00

DVS=Discriminative voxel selection
EDSD=European DTI study on Dementia
BIAC=Brain imaging and analysis center, Duke University, North Carolina, USA
For Dyrba et al. (2015a), pMCI=amyloid+, sMCI=amyloid-
For Prasad et al. (2015), pMCI=late MCI, sMCI=early MCI.

a CN/late MCIs.
b CN/early MCIs.
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voxels of the images were selected using mutual information criterion,
and SVM and Gaussian naive bayes were used for classification. The
classification based on stage-specific categories of pMCIs demonstrated
better predictive accuracy than did the overall classification of pMCI
and sMCI, a result also demonstrated earlier by Eskildsen et al. (2013).

Atlas-based methods. Several FDG-PET based AD classification
studies are based on parcellation of FDG-PET images into different
anatomical regions, utilizing pre-defined structural atlases. Pagani
et al. (2015) used the average regional intensity and inter-
hemispheric symmetry between the parcellated regions as features
for SVM-based MCI classification. Similarly, Gray et al. (2012) used the
average regional intensities of baseline and 12-months follow-up scans,
and the difference of intensity between these two time-points as
features for SVM-based classification. Accuracy increased by a factor
of 1–2% when using both the longitudinal and cross-sectional features
in this study.

Projection-based methods. Projection-based methods reduce the
dimensionality of features by projecting the higher-dimensional
feature space into a lower-dimensional space, where the significance
of each feature, with respect to the problem at hand, can be measured
in terms of its variance. Thus, a subset of features with relatively larger
variance may be selected for further inspection. In this context, Padilla
et al. (2012) applied non-negative matrix factorization projections to
input images. They then selected several subsets of these projections,
and classified those using SVM. Ultimately, the classification results
obtained from several projections were combined to obtain a final
prediction. The authors showed that this method achieved a 17%
improvement in classification accuracy as compared to a VAF-based
method for the same dataset.

Amyloid-PET
In vivo measurements of the cerebral amyloid burden (β-amyloid)

may be clinically useful in the management of patients with cognitive
impairment who are being evaluated for possible AD. Several radi-
oligands are used for measuring amyloid burden, such as the 11C-
Pittsburgh Compound B (11C-PIB), and 18F-labelled amyloid-PET

tracers, including florbetapir, flutemetamol, and florbetaben. Some
group analysis-based studies have revealed differences in amyloid
burden in various brain regions in different subject groups; higher
amyloid burden has been found in AD (Klunk et al., 2004) and MCI
subjects (Camus et al., 2012) than in healthy individuals, and in
subjects with pMCI than in those with sMCI (Koivunen et al., 2011;
Okello et al., 2009). However, very little attention has been paid to
quantification of plaque levels in different brain regions and its use in
AD classification. Vandenberghe et al. (2013) proposed one such
classification framework in which they used the intensity values of all
the voxels of 18F-flutemetamol PET scans as features for SVM-based
classification of AD versus healthy individuals, and pMCI versus sMCI
subjects.

Multimodal studies

Several biomarkers have shown association with AD, including
proteins measured in the CSF (Melah et al., 2016), brain atrophy,
particularly in the hippocampus (Frisoni et al., 2002) and posterior
cingulate gyrus (Baron et al., 2001), measured through structural MRI,
and hypometabolism, associated with AD in the temporal and parietal
lobe, as well as in the posterior cingulate cortex, measured via
FDG-PET (Herholz et al., 2002; Langbaum et al., 2009). In addition,
AD brains demonstrate the formation of insoluble β amyloid plaques
and neurofibrillary tangles (Jagust, 2013), and it has been suggested
that the quantity of β amyloid can be related to the disease stage
(Murpy and LeVine 2010).

These biomarkers yield complementary information, i.e., different
modalities capture disease information from different perspectives,
thereby improving understanding of the disease pattern over that
presented by one modality. Classification frameworks facilitate exploi-
tation of the complementary information obtained from multiple
modalities. A top-level breakdown of two classification frameworks,
straightforward feature concatenation and specialized fusion frame-
works, used to exploit multimodal data for AD classification is shown in
Fig. 3. Ensemble frameworks are shown as an example of specialized
fusion frameworks in the figure. The terms F1, F2, …, Fn-1, Fn are the
feature sets extracted from 1, 2, …, n-1, n modalities or other

Table 6
A brief description of the datasets used for the validation of FDG-PET and amyloid-PET based AD classification frameworks.

Study Subjects Type Classification algorithm Database Classification accuracy

AD MCI pMCI sMCI CN AD/CN MCI/CN AD/MCI sMCI/pMCI

(Hinrichs et al., 2009) 89 – – – 94 VAF LPBM ADNI 84.00 – – –

(Vandenberghe et al., 2013) 27 20 – – 25 VAF SVM Internal 88.46 – – 100.00

(Cabral et al., 2015) – – 44 56 – DVS SVM, GNB ADNI – – – 85.00
(Cabral et al., 2015) – – 26 (6) 56 – DVS SVM, GNB ADNI – – – 86.00
(Cabral et al., 2015) – – 41 (12) 56 – DVS SVM, GNB ADNI – – – 82.00
(Cabral et al., 2015) – – 33 (18) 56 – DVS SVM, GNB ADNI – – – 75.00
(Cabral et al., 2015) – – 25 (24) 56 – DVS SVM, GNB ADNI – – – 74.00

(Gray et al., 2012) 50 – 53 64 54 Atlas SVM ADNI 88.00 81.30b 83.50a 63.10
(Pagani et al., 2015) – – 62 – 109 Atlas SVM EADC – 91.00b – –

(Padilla et al., 2012) 53 114 – – 52 PRO SVM ADNI 86.59 – – –

PRO=Projection based techniques
DVS=Discriminative voxel selection
EADC=European Alzheimer's disease consortium
GNB=Gaussian naive bayes
The first entry for Cabral et al. (2015) shows the classification accuracy by using all the sMCIs and pMCIs. The remaining entries show the classification between sMCI and different sets
of pMCI subjects, divided according to their time of conversion from sMCI to pMCI. Numbers of months are shown in parenthesis against pMCI subjects.

a AD/sMCI
b CN/pMCI
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biomarkers, respectively. The symbols C1, C2,…, Cn-1, Cn represent the
classification algorithms trained on feature sets 1, 2, …n-1, n, respec-
tively. Table 7 summarizes the results and the corresponding datasets
for the studies using these frameworks.

Straightforward feature concatenation
The simplest method for exploiting the complementary information

provided by multiple modalities is concatenation of the features of
these modalities into a single feature vector and training a classifier on
that vector.

Structural MRI is a key component of these studies, and its features
have been combined with features extracted from various other
modalities to improve classification. In this context, various authors
have combined structural MRI-based features with the features calcu-
lated from DTI and functional MRI. In earlier studies, the regional
volumetric measures, calculated from structural MRI, and FA, calcu-
lated from WM tracts, have been combined for SVM-based MCI and
AD classification (Cui et al., 2012; Li et al., 2014a). Among recent
studies, Tang et al. (2016) used volumetric, shape, and diffusion
features of the hippocampus and amygdala for AD classification.
They used PCA and Student's t-test for reducing the feature set, and
LDA and SVM for classification. Similarly, Schouten et al. (2016)
combined regional volumetric measures, diffusion measures, and
correlation measures amongst all brain regions calculated from func-
tional MRI. They employed logistic elastic net (Zou and Hastie, 2005)
for classification.

The combination of structural MRI with demographics, cognitive
tests, and genetic data has also been explored in a few studies. For
instance, Vemuri et al. (2008) combined GM, WM, and CSF density
maps with age, gender, and APOE genotype for SVM-based AD
classification. Zhang et al. (2014) used GM density maps, intracranial
volume, atlas-scaling factor, normalized whole brain volume, and age
as features for AD and MCI classification. The feature set was classified
by using a kernel SVM decision-tree (a variant of the SVM decision-
tree). Recently, Moradi et al. (2015) used GM density maps, age, and
cognitive tests as features, and employed classification algorithms such
as low-density separation and random forest for AD conversion
prediction.

The combination of structural MRI features with PET and CSF
biomarkers is another dimension. In earlier studies, Fan et al. (2008b)

combined regional volumetric measures, and regional FDG-PET in-
tensity for MCI classification using SVM. In addition to this, the
SPARE-AD index (Davatzikos et al., 2009) was combined with CSF
biomarkers (Davatzikos et al., 2011) to predict conversion from MCI to
AD using SVM. Further, Dukart et al. first used FDG-PET and GM
density values of all the voxels of selected ROIs (Dukart et al., 2011a)
and later the average of all the voxels of selected ROIs for SVM-based
AD classification (Dukart et al., 2013). In recent studies, Zhu et al.
(2014) combined regional GM volume, regional average FDG-PET
intensity, and CSF biomarkers as features, and proposed a matrix-
similarity-based loss function for better classification using SVM.
Similarly, Apostolova et al. (2014) used hippocampal volume and
CSF biomarkers for SVM-based AD and MCI classification.

The combination of structural MRI, PET, and CSF biomarkers
together with genetic data and neuropsychological status exam scores
has also been common. For example, SPARE-AD was combined with
cognitive scores, APOE genotype, and CSF biomarkers (Da et al., 2014)
to predict conversion from MCI to AD. Similarly, Kohannim et al.
(2010) combined hippocampal, ventricular, and temporal lobe vo-
lumes, FDG-PET numeric summary, CSF biomarkers, APOE genotype,
age, sex, and body mass index for SVM-based AD and MCI classifica-
tion. In addition, Cui et al. (2011) combined average regional cortical
thickness, standard deviation of thickness, average regional surface
area and cortical volume from structural MRI with CSF biomarkers and
neuropsychological status exam scores. Features were reduced using
mRMR, and SVM was used for classification. Recently, Zheng et al.
(2015) used regional thickness measures, regional correlative measures
(calculated from thickness measures) and APOE genotype for SVM-
based AD classification, and AD conversion prediction.

Specialized fusion strategies
While the simplicity of straightforward concatenation may be

considered desirable, the method suffers from a major pitfall: because
it treats all features as equivalent, it provides no way to account for the
different natures of features extracted from different modalities
(Hinrichs et al., 2011; Liu et al., 2014). For instance, where one
modality has many more features than another (or has variation on a
much larger scale), classification algorithms trained on concatenated
features may produce prediction models that effectively ignore the
other modalities. Specialized fusion strategies can be used to ensure

Fig. 3. A top-level breakdown of multimodality-based classification studies for AD classification.
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that the complementary information found across all modalities is still
used. These strategies may either combine the results of classification
rules trained on the individual modalities (Dai et al., 2012) or use
special combination rules to combine features before training (Dyrba
et al., 2015b; Zhang and Shen, 2012; Zhang et al., 2011).

These strategies were employed to utilize the complementary
information of features extracted from structural MRI, rs-fMRI, and
DTI for AD classification. Dai et al. (2012) used regional GM
volumetric measures, and functional measures (amplitude of low-
frequency fluctuations, regional homogeneity, and regional functional
connectivity strength) as features. They trained separate maximum
uncertainty LDA classifiers on the structural and functional measures,
and combined the output of the classifiers via weighted voting.
Recently, Dyrba et al. (2015b) used regional GM volumetric measures,
average tract intensity for FA, MD, and mode of anisotropy, and
network measures of weighted local clustering coefficient and the
shortest weighted path-length calculated from rs-fMRI as features.
They adopted multi-kernel SVM for AD classification.

In addition, the features extracted from structural MRI and PET
images, as well as CSF biomarkers were also fused using these

strategies. In this context, regional GM volume, regional average
FDG-PET intensity, and CSF biomarkers were used as features for
AD and MCI classification along with multi-kernel learning (Zhang and
Shen, 2012; Zhang et al., 2011) and multi-task learning (Yu et al.,
2016). The same features were also used for prediction of conversion
from MCI to AD by using domain transfer learning (Cheng et al.,
2015b) and semi-supervised multimodal manifold-regularized transfer
learning (Cheng et al., 2015a). Recently, Liu et al. (2014) used CSF
biomarkers, and shape measures of hippocampus and GM volume in
atlas-defined ROIs for AD classification using multi-kernel SVM. Xu
et al. (2015) proposed using the GM volume, regional average intensity
from FDG-PET and Florbetapir images as features. They assigned
different weights to the features of different modalities for classification
of AD versus MCI subjects, and pMCI versus sMCI subjects using a
sparse representation-based classification method. Zu et al. (2015)
used regional GM volume, and the regional average FDG-PET intensity
for AD and MCI classification, and used multi-kernel SVM for
classification.

Furthermore, these strategies were also used to exploit the features
of structural MRI, PET, and CSF biomarkers together with genetic data

Table 7
A brief description of the datasets used for the validation of various multimodality based AD classification frameworks.

Subjects Type Classification algorithm Database Classification accuracy

AD MCI pMCI sMCI CN AD/CN MCI/CN AD/MCI sMCI/pMCI

(Fan et al., 2008b) – 15 – – 15 SFC SVM BLSA – 90.00 – –

(Vemuri et al., 2008) 190 – – – 190 SFC SVM ADNI 89.30 – – –

(Kohannim et al., 2010) 158 264 – – 213 SFC SVM ADNI 93.81 75.49 – –

(Davatzikos et al., 2011) – – 69 170 – SFC SVM ADNI – – – 61.70
(Dukart et al., 2011a) 21 – – – 13 SFC SVM Leipzig 100.00 – – –

(Cui et al., 2011) 96 – 56 87 111 SFC SVM ADNI – – – 67.13
(Cui et al., 2012) – 79 – – 204 SFC SVM SMAS – 71.09 – –

(Dukart et al., 2013) 49 – – – 41 SFC SVM ANDI, Leipzig 90.00a – – –

(Zhang et al., 2014) 24 57 – – 97 SFC Kernel SVM decision-tree OASIS 96.00 85.00 88.00 –

(Zhu et al., 2014) 51 99 – – 52 SFC SVM ADNI 95.90 82.00 – –

(Li et al., 2014a) 21 – – – 15 SFC SVM TH 94.30 – – –

(Apostolova et al., 2014) 95 182 – – 111 SFC SVM ADNI 85.00 79.00 70.00 –

(Moradi et al., 2015) 200 – 164 100 231 SFC LDS, Random forest ADNI – – – 81.72
(Zheng et al., 2015) 163 – 104 94 189 SFC SVM ADNI 92.11 – – 79.37
(Tang et al., 2016) 29 – – – 23 SFC LDA, SVM TH 94.60 – – –

(Schouten et al., 2016) 77 – – – 173 SFC Elastic net classifier PRODEM 93.00 – – –

(Clark et al., 2016) – 24 – – – SFS Ensemble classifier ADRC – – 87.20b –

(Hinrichs et al., 2011) 48 119 – – 66 SFS Multi-kernel SVM ADNI 92.40 – – –

(Zhang et al., 2011) 51 99 – – 52 SFS Multi-kernel SVM ADNI 93.20 76.40 – –

(Dai et al., 2012) 16 – – – 22 SFS Ensemble of MU-LDA XWH 89.47 – – –

(Zhang and Shen, 2012) 45 91 – – 50 SFS Multi-kernel SVM ADNI 93.33 83.20 – –

(Young et al., 2013) 63 – 47 96 73 SFS Gaussian process classifier ADNI – – – 74.00
(Gray et al., 2013) 37 – 34 41 35 SFS Random forest ADNI 89.00 74.60 – 58.00
(Casanova et al., 2013) 171 – 153 182 188 SFS RLR ADNI 87.10 – – 63.00
(Liu et al., 2014) 50 – – – 70 SFS Multi-kernel SVM ADNI 87.12 – – –

(Xu et al., 2015) 113 – 27 83 117 SFS SRC ADNI 94.80 74.50 – 77.80
(Zu et al., 2015) 51 – 43 56 52 SFS Multi-kernel SVM ADNI 95.95 80.26 – 69.78
(Cheng et al., 2015b) 51 – 43 56 52 SFS Domain transfer SVM ADNI – 86.40 82.70 79.40
(Cheng et al., 2015a) 51 – 43 56 52 SFS M2TL ADNI – – – 80.10
(Dyrba et al., 2015b) 28 – – – 25 SFS Multi-kernel SVM EDSD 85.00 – – –

(Korolev et al., 2016) – – 139 120 – SFS Probabilistic multi-kernel ADNI – – – 80.00
(Yu et al., 2016) 50 97 – – 52 SFS Multi-task learning ADNI 92.60 80.00 – –

SFC=Straightforward feature concatenation, SFS=Specialized fusion strategies
LDS=Low density separation
SRC=Sparse representation-based classification
MU-LDA=Maximum uncertainty-linear discriminant analysis
M2TL=Multimodal manifold-regularized transfer learning
TH=Tongji hospital, Wuhan, China
SMAS=Sydney memory and aging study
XWH=Xuan wu hospital, Beijing, China
PRODEM=Prospective registry on dementia in Austria
ADRC=Alzheimer disease research center, Washington University school of medicine, St. Louis, Missouri, USA
a Accuracy for the combined ADNI+Leipzig cohort
b Prediction of conversion from MCI to AD (AUC).
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and neuropsychological status exam scores. In earlier studies, Hinrichs
et al. (2011) used structural MRI-based density maps, FDG-PET
intensities, CSF biomarkers, APOE genotype, and neuropsychological
status exam scores as features for multi-kernel SVM-based AD
classification, and AD conversion prediction. Young et al. (2013) used
regional GM volume, regional average FDG-PET intensity, and CSF
biomarkers along with APOE genotype, and employed Gaussian
process classifier to train multiple kernels on AD and CN subjects,
and test on pMCI and sMCI subjects. Also, Gray et al. (2013) trained
random forest classifiers on regional GM volumetric measures, CSF
biomarkers, voxel-based FDG-PET intensities, and APOE genotype for
AD and MCI classification. Casanova et al. (2013) combined SPARE-
AD index with GM, WM and CSF density maps, total hippocampal
volume, regional volumetric and cortical thickness measures, and
cognitive scores for AD classification and prediction of conversion
from MCI to AD using large-scale RLR. In recent studies, Korolev et al.
used cortical and subcortical volumes, mean cortical thickness, surface
area, and curvature from structural MRI, clinical measures and plasma
measures for AD conversion prediction. They used mutual information
criterion for feature selection and probabilistic multi-kernel learning
for classification (Korolev et al., 2016). Similarly, Clark et al. used
cognitive scores, cortical thickness measures, hippocampal and ven-
tricular volume along with age, sex, and education. They selected
features using random forest, and used an ensemble of random forests
of conditional trees, SVM, naive Bayes, and multilayer perceptrons for
classification (Clark et al., 2016).

Overall, the multimodal techniques under this category have
demonstrated varied improvement over single modalities, ranging
from 1 to 7%. Almost all the methods demonstrated some improve-
ment, however, no improvement was observed using multimodality
data as compared to DTI measures alone (Dyrba et al., 2015b).

Discussion

Recent advances in neuroimaging research suggest that AD pathol-
ogy can be detected preclinically (Perrin et al., 2009). Consequently, an
important body of research has been devoted to the neuroimaging-
based AD/MCI classification and AD conversion prediction using
various neuroimaging modalities, such as structural MRI, functional
MRI, DTI, and PET. In this review, we presented only those studies
that used appropriate cross-validation strategies to assess the perfor-
mance of their classification frameworks. Among the various neuroi-
maging modalities, structural MRI was the most frequently used, likely
due to its widespread availability. The second most common method
was the combination of features from one or more modalities with data
levels such as genetic data, cognitive scores, and CSF biomarkers.
Research based on features extracted from FDG-PET, amyloid-PET,
DTI, and functional MRI were less common. The main objective in
most of the studies reviewed here was the production and selection of
AD-related inherent features from high-dimensional raw neuroimaging
data. Therefore, we grouped the classification studies appertaining to
each modality according to feature extraction methods. Brain atrophy
was most often quantified via tissue density maps (Casanova et al.,
2011; Kloppel et al., 2008), cortical/subcortical thickness measures
(Desikan et al., 2009; Wee et al., 2013), and geometric measures of
hippocampus (Costafreda et al., 2011; Gerardin et al., 2009) from
structural MRI. Connectivity networks developed on top of the func-
tional strength (Chen et al., 2011; Koch et al., 2012) and diffusion
measures (Prasad et al., 2015; Wee et al., 2011) of parcellated brain
regions were the most common feature extraction methods in func-
tional MRI and DTI, respectively. Similarly, the cerebral glucose
metabolic rate measured in parcellated brain regions was common in
FDG-PET (Gray et al., 2012; Pagani et al., 2015). These automated
feature extraction methods generate a high-dimensional data for
further analysis. A wide variety of sophisticated and well-established
supervised classification algorithms such as SVM and LDA have been

applied on extracted neuroimaging features for AD/MCI classification
or AD conversion prediction in different studies.

The main advantage of applying classification algorithms on
neuroimaging data is the potential use for detecting AD at the
prodromal stages, well even before clinical manifestation (Misra
et al., 2009; Park et al., 2013), demonstrating the probable use in
routine clinical settings in the future. Among the wide range of
classification algorithms, SVM was the most frequent for AD classifica-
tion (Apostolova et al., 2014; Cui et al., 2012; Kohannim et al., 2010;
Padilla et al., 2012). Multi-kernel learning, which are an extension of
ordinary kernel-based classification algorithms, were also increasingly
used in AD classification (Dyrba et al., 2015b; Liu et al., 2014; Zu et al.,
2015). Other less common classification algorithms used in AD
research were LDA (Lillemark et al., 2014; Tang et al., 2015),
orthogonal partial least square regression (Westman et al., 2011),
random forest (Moradi et al., 2015), regularization-based methods
(Casanova et al., 2011), voting-based ensemble methods (Liu et al.,
2015), kernel SVM decision-tree (Zhang et al., 2014), and LPBM
(Hinrichs et al., 2009). While SVM could have the advantage of
achieving high classification accuracy with small training sample size
compared to other classification algorithms such as neural networks
(Shao and Lunetta, 2012), they might have the disadvantage of the
need for parameter tuning (Chapelle et al., 2002). For neuroimaging-
based AD classification, it remains important to conduct studies
comparing between diverse classification algorithms thoroughly, as
only limited number of studies have been conducted so far (Khondoker
et al., 2016; Lehmann et al., 2007).

The feature extraction methods summarized here are influenced by
several factors that vary across studies. One factor is spatial smoothing
of structural MRI and FDG-PET, which is generally performed to
account for noise (i.e. registration errors). Usually, Gaussian smoothing
of full-width half-max is used for denoising. It is important to note that
too small kernel size might lead to missing the many regions that might
present group differences. Conversely, too large kernel may blur image
features in regions that display group differences from the rest of the
regions. An optimal solution has yet to be achieved as the kernel size is
chosen either ad hoc or empirically. A majority of the reviewed studies
used a Gaussian kernel of 8 mm for both structural MRI (Misra et al.,
2009; Moradi et al., 2015) and FDG-PET (Gray et al., 2013; Pagani
et al., 2015; Zhang et al., 2011; Zhu et al., 2014). However, kernels of
other sizes, such as 10 mm for structural MRI (Dai et al., 2012; Plant
et al., 2010) and 15 mm for FDG-PET (Fan et al., 2008b), were rarely
used. An additional factor that influences the atlas-based methods is
the selection of the atlas itself. Atlas-based parcellation using a pre-
defined anatomical brain atlas is a methodologically simple and
computationally tractable feature extraction method, with general
versatility (Ota et al., 2015; Zhang et al., 2011). However, the choice
of atlas will have an effect on classification performance. It has been
shown that features extracted based on different anatomical parcella-
tions lead to differences in classification performance under similar
experimental conditions (Ota et al., 2014, 2015). These differences in
classification performances may be associated with changes in parcel-
lation between atlases, for example, the cerebellum region. The LONI
probabilistic brain atlas considers the cerebellum as one single region,
whereas the AAL atlas finely parcellates the cerebellum into 26 smaller
regions.

In addition to feature extraction and classification, feature selection
is also important for identifying distinguishing features. Selection of
appropriate features not only removes the non-informative signal, but
also reduces the computational time involved in classification. Two
widely adopted methods for feature selection are biologically informed
and automated feature selection. The former relies on prior biological
knowledge about the discriminating ability of certain regions, generally
obtained from existing literature, whereas the latter selects features
based on general data characteristics, without prior knowledge. Among
the automated methods, various ranking-based methods, such as t-
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tests (Tang et al., 2016; Wee et al., 2013) and Pearson's correlation
coefficient test (Davatzikos et al., 2008; Wee et al., 2011), wrapper-
based methods, a combination of ranking and wrapper-based methods,
such as mRMR (Wee et al., 2013), and embedded methods, such as
elastic net regression, were used in the reviewed studies, and improved
the classification performance. It is feasible that variations in feature-
selection methods will lead to differences in AD classification perfor-
mance. It has been suggested that automated feature selection will not
improve classification accuracy as compared to biologically informed
feature selection, driven by prior biological knowledge of regions
typically affected by AD, such as the hippocampus, amygdala, thala-
mus, and caudate (Chu et al., 2012). Similar results were observed in
the Pittsburgh Brain Activity Interpretation Competition, wherein the
team applying prior biological knowledge for feature selection (Chu
et al., 2011) outperformed the teams using automated feature selec-
tion. In addition, the winning method (Sørensen et al., 2014) in the
recent CADDementia 2015 challenge (Bron et al., 2015) was also based
on biologically informed feature selection.

AD classification studies comparison

The key components of each classification study, such as prediction
accuracy, study population, and feature types were summarized in table
format in this review. It should be emphasized that these tables are
meant to provide a glance to each individual study and not for
comparative purposes. Frequently throughout reviewing these studies,
authors stated that their proposed classification framework was super-
ior to existing ones solely on the basis of the achieved accuracy.
However, we believe that considering the number of factors involved in
each study, summarized below, it is difficult to compare these studies
directly and therefore to draw general conclusions about the state of
the field as a whole.

Length of follow-up period
The length of the follow-up period for defining MCI conversion also

varied from a minimum of 6 months to a maximum of 36 months
across different studies. It is well-known that the level of neurodegen-
eration, and hence, the rate of AD prediction increases as the MCI
subjects progress on a continuum from the CN state to the AD state
(Cabral et al., 2015; Eskildsen et al., 2013). Therefore, we believe that
the prediction performance of various studies cannot be compared
directly, considering the different lengths of the follow-up periods.

Study population
Baseline characteristics of the study population, such as gender,

age, genotype (APOE), and education are considered to be confounding
factors in AD classification. These factors may have a profound effect
on key features extracted from the neuroimaging modalities and
therefore on the resultant classification accuracies. AD classification
studies in general differ in how they deal with the confounding factors,
i.e., the number of confounding factors that need to be considered, and
how they are considered, etc. In the past, confounding factors have
mainly been dealt with by matching the subjects in different groups
according to the factors or by using confounding factors as covariates in
a statistical model, in order to remove their effect from the model.
However, increasing attention has been given to this issue in recent
years, and several automated methods have now been proposed to
control for the effects of confounding factors (Dukart et al., 2011b; Li
et al., 2011).

Degree of impairment
An objective, final diagnosis of AD can only be made through

autopsy and therefore is rarely used (Kloppel et al., 2008). Even then,
the disease stage at autopsy can be very different from the disease stage
determined by scanning. Alternatively, clinical diagnostic criteria for
AD (McKhann et al., 2011) and MCI (Petersen, 2004) are used in

practice as a reference standard for evaluation. The MCI diagnosis
based on these criteria leads to a clinically heterogeneous mix of more
and less impaired patients, where each patient presents a disease stage
on a continuum from CN to AD (Misra et al., 2009). A more severely
impaired MCI group, when MCI is used as one diagnostic entity, may
show larger structural differences from healthy individuals, leading to
potentially higher classification accuracies.

Evaluation metrics
Classification performance in some of the studies reviewed here was

only reported in terms of classification accuracy. The measure of
classification accuracy by itself could be uninformative in unbalanced
datasets and cannot be used for comparison. For instance, a 90%
classification accuracy in a dataset of 90 diseased and 10 healthy
individuals does not convey any information, since a biased classifica-
tion algorithm that classifies all the subjects as diseased can also lead to
a 90% classification accuracy. Therefore, we believe that balanced
accuracy; sensitivity/specificity or precision/recall, along with the area
under a receiver-operating-characteristic curve should be reported for
direct comparison of results.

Factors affecting the performance of classification algorithms
The expected performance of a classification algorithm is defined by

two factors. The first is the number of subjects in the training set and
the second is the relative proportion of subjects from each class present
in the test set. Mostly the first factor is determined by the sample size
available for training, and by the cross-validation strategy used in the
experiment. The larger the number of subjects in the training set, the
better the generalizability of the classification algorithm. The second
factor could affect the classification accuracy as depending on class
relative proportion, the sensitivity and specificity of a classification
algorithm could differ. This factor can be easier to fix, as stratification is
becoming increasingly common, and subjects of different classes are
selected based on matched demographic characteristics.

The choice of the split-in-train-test or k-fold cross-validation
strategies, adopted in the classification framework, influences the
statistical significance of the classification accuracy (Mendelson et al.,
2014), which can be calculated via binomial or permutation tests
(Noirhomme et al., 2014). The split-in-train-test assumes indepen-
dence between the training and test sets, which is the key to binomial
tests. However, the split-in-train-test can generally be limited in some
medical applications where classification algorithms are trained on
small number of subjects. Consequently, k-fold cross-validation is more
commonly applied. K-fold cross-validation does not hold the indepen-
dence assumption, as the training subjects in different iterations could
overlap; therefore, permutation tests are feasible for evaluating the
statistical significance of k-fold cross-validation strategies (Noirhomme
et al., 2014). It has been suggested that 10-fold or 5-fold cross-
validation should be used to establish a trade-off between bias and
variance (Lemm et al., 2011). Furthermore, it has also been suggested
that permutation tests should be used along with cross-validation,
especially when dealing with a small sample size (Noirhomme et al.,
2014).

Challenges with AD classification studies

Generalization ability
A critical challenge underlying the clinical use of AD classification

frameworks is the ability of predictive models that allow good general-
ization to new patient data. Ideally, the models should be able to
perform well regardless of the variability of imaging protocols,
scanners (Abdulkadir et al., 2011) and demographics, and should be
free of double-dipping, a phenomenon very common in older studies.
The term double-dipping, or circular analysis, refers to the use of test
subjects in any part of the training process, such as selection of features
and training of classification algorithm, and may lead to over-fitted
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classification (Kriegeskorte et al., 2009). To conduct a fair validation,
one should avoid double-dipping by excluding the test subjects used in
the subsequent validation of the classification algorithms from the
process of feature selection and training of the classification algorithm.
Double-dipping was quite common in feature selection in older studies
(Querbes et al., 2009; Wolz et al., 2011); however, it has become less
common as its effects became clearer. In order to encourage the
development of classification frameworks that are generalizable to
new datasets, the neuroimaging community has organized more AD
classification challenges, in which different researchers attempt to solve
the classification problem by leveraging the current state-of-the-art
techniques on publicly available datasets. For example, the purpose of
CADDementia 2015 challenge (Bron et al., 2015) was to measure the
generalizability of structural MRI-based classification studies on un-
seen subjects, where the best performing study yielded an area under
the receiver-operating-characteristic curve of 78.8%. Similarly, the
main aim of the DREAM 2016 challenge (Allen et al., 2016) was to
identify accurate biomarkers of cognitive decline for advancing early
diagnosis. These challenges not only help to determine the general-
izability of any study, but also enable fair performance comparison of
different studies on the same dataset, which would otherwise not be
possible due to different experimental conditions across distinct
studies. Furthermore, efforts have been made to standardize compar-
ison of various studies on the same dataset, such as in the study of
Cuingnet et al., in which the authors evaluated the performances of 10
studies using the ADNI dataset (Cuingnet et al., 2011).

Sample size
It is generally believed that smaller datasets do not capture the full

spectrum of heterogeneity among different classes and therefore, may
be less generalizable on unseen patient data, whereas opposite is true
for larger datasets. Nonetheless, quite different results were seen in
CADDementia 2015 challenge (Bron et al., 2015), where the studies
training classification algorithms on larger training sets (Abdulkadir
et al., 2014; Eskildsen et al., 2014) did not perform better than the
studies training classification algorithms on relatively smaller datasets.
Therefore, the minimum sample size required for training a general-
izable classification model remains debatable.

Reproducibility
Disregard of the appropriate packaging of classification frame-

works, where numerical solutions could lead to different experimenta-
tion conditions, and the use of local datasets or a subset of a larger
public dataset without providing detailed subject level identification,
are the main factors hindering the reproducibility of existing results
and comparison between study findings. We highly encourage report-
ing the results derived from public datasets, and appropriate listing of
the subjects, as had been done in a few studies (Moradi et al., 2015;
Zhang et al., 2011). We also recommend that authors attend to the
proper packaging and availability of their code, particularly in cases
where sophisticated feature extraction and classification algorithms
have been used, as this can markedly improve reproducibility.

AD heterogeneity
The heterogeneity of AD necessitates a definition of distinct

clinicopathological subtypes of AD. While AD has been stereotypically
defined using the Braak stages, atypical AD cases do not fit into this
scheme. For example, a recent study has shown that hippocampal
sparing and limbic-predominant AD subtypes might account for about
25% of AD cases (Murray et al., 2011). Simplistic measures, such as the
ratio of hippocampal to cortical volumes, showed a high discrimination
ability between the subtypes (Whitwell et al., 2012). Other studies used
clustering-based approaches for defining the AD pattern; a recent study
made use of cortical thickness clustering and showed that AD in the
earlier stages can be categorized into various anatomical subtypes, with
distinct clinical features (Noh et al., 2014). By including additional

biomarkers, such as cerebrospinal fluid and serum biomarkers, four
clusters emerged with distinct biomarker patterns, the first of which
was biologically similar to healthy individuals and which rarely
converted to AD (Nettiksimmons et al., 2014). We believe that the
heterogeneity of AD patterns has been widely ignored in the existing
AD classification studies, and more attention should be paid to this line
of research in future. The development of tools that can deal with
heterogeneous imaging patterns is important and should become an
area of focus (Dong et al., 2016, 2017; Varol et al., 2017). It is likely
that systematic quantification of heterogeneity is critical for developing
effective personalized diagnostic and predictive tools using machine
learning.

Conclusion and future directions

Neuroimaging-based classification of AD and MCI has increasingly
been reported in the literature over the past decade, as a means to
derive individual biomarkers of these conditions. The ultimate goal of
AD classification is to generate an individual diagnosis using a single
MRI scan by applying classification models already trained on a large
pool of diseased and healthy individuals, and to predict future
progression at earlier disease stages. Several neuroimaging modalities,
as discussed in this review, including structural and functional MRI,
DTI, FDG-PET, and amyloid-PET, have shown characteristic altera-
tions in the brains of AD and MCI patients that can help rule-in the
pathophysiological process of AD. No single neuroimaging modality
can be sufficient, as each has complementary merits and limitations.
Combining information from multiple modalities has improved the
classification performance of AD/MCI and AD conversion prediction.
In addition, the combination of features extracted from neuroimaging
modalities with demographics, cognitive test scores, CSF biomarkers,
and genetic data were also effective in achieving accurate classification.
However, there is a great need for validation of these markers in
clinical settings, along with their validation in databases comprising
highly preselected subjects, which significantly differ from that seen in
the clinic. Some challenges faced by the researchers in the field of AD
classification, such as high dimensions of raw neuroimaging data,
smaller sample sizes, generalizability, and heterogeneity in AD, make it
difficult to derive a more precise classification. However, the use of
neuroimaging for AD classification remains highly promising, as many
of the aforementioned challenges can be addressed.

The potential consideration of classification frameworks in clinical
practice has largely driven the development of machine-learning tools
that can integrate several imaging features and make predictions on an
individual basis. This line of research is likely to become a focus-point
in the upcoming decade. In addition, multimodal approaches that seek
to find patterns of neurodegeneration across different types of images
that form distinctive imaging signatures of the stages of AD, and
consensus-based approaches, which tend to improve classification by
combining the output of multiple classification algorithms, are also
gaining increasing attention. Biologically informed feature selection,
and characterization of heterogeneity of AD are also important lines of
research that are likely to be emphasized in future studies.
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