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Abstract
The use of biomarkers for early detection of Alzheimer’s disease (AD) improves the
accuracy of imaging-based prediction of AD and its prodromal stage that is mild cog-
nitive impairment (MCI). Brain parcellation-based computer-aided methods for
detecting AD and MCI segregate the brain in different anatomical regions and use
their features to predict AD and MCI. Brain parcellation generally is carried out based
on existing anatomical atlas templates, which vary in the boundaries and number of
anatomical regions. This works considers dividing the brain based on different atlases
and combining the features extracted from these anatomical parcellations for a more
holistic and robust representation. We collected data from the ADNI database and
divided brains based on two well-known atlases: LONI Probabilistic Brain Atlas
(LPBA40) and Automated Anatomical Labeling (AAL). We used baselines images
of structural magnetic resonance imaging (MRI) and 18F-fluorodeoxyglucose positron
emission tomography (FDG-PET) to calculate average gray-matter density and aver-
age relative cerebral metabolic rate for glucose in each region. Later, we classified
AD, MCI and cognitively normal (CN) subjects using the individual features
extracted from each atlas template and the combined features of both atlases. We
reduced the dimensionality of individual and combined features using principal com-
ponent analysis, and used support vector machines for classification. We also ranked
features mostly involved in classification to determine the importance of brain regions
for accurately classifying the subjects. Results demonstrated that features calculated
from multiple atlases lead to improved performance compared to those extracted
from one atlas only.
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1 | INTRODUCTION

Alzheimer’s disease (AD) is the most prevalent form of
dementia in older people across the globe. It has been stated
that the people affected with AD are expected to be double in
the upcoming two decades, and every one person out of a total
of eighty-five will have some form of dementia by 2050.1

Therefore, it is highly desirable to diagnose AD as early as
possible, especially in its early stage also known as amnestic
mild cognitive impairment (MCI). The early detection is

important in the sense that it can help the physicians in accu-
rately deciding the treatment plans.

AD brain shows atrophy and altered metabolic rate of glu-
cose in several brain regions such as hippocampus and amyg-
dala, as shown in Figure 1. Several classification methods
have been proposed by the researchers in the past for auto-
mated discrimination of AD and MCI from cognitively normal
(CN). The commonly used modalities for AD detection are
structural MRI,2–5 functional MRI,6,7 18F-fluorodeoxyglucose
positron emission tomography (FDG-PET),8–10 single photon
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emission computed tomography11 and diffusion tensor
imaging.12,13 A recent survey covers most of the techniques
developed using these modalities.14 Some researchers have
also combined the biomarkers from various modalities with
genetic information and demographics to get better classifica-
tion accuracy.15,16 A major subset of these techniques is in fact
based on structural MRI, which can further be divided into
two major categories: “voxels as features-based methods”
and “atlas based-methods.” In “voxels as features-based
methods,”2,3 all the voxels of brain are used as features,
whereas in “atlas based-methods,” the brain is parcellated into
several anatomical regions, and features such as voxel-based
morphometry17 based gray-matter (GM) and white matter
(WM) volumes, and cortical thickness are extracted from these
anatomically defined regions. Several different atlases have
been used in the past for brain parcellation, and each atlas
divides brain into different anatomical regions. The atlas-
based methods have been proven to be quite effective for accu-
rate detection of AD and MCI, and can further be divided into
two types; fixed and adaptive atlas-based methods. In “fixed
atlas based methods,”4,18 brains are parcellated into anatomi-
cal regions based on fixed pre-defined atlases, and features are
extracted from those regions. However, in “adaptive atlas
based methods,”19,20 adaptive regions are calculated based on
the subjects involved in one particular study, and features are
calculated from the adaptively calculated regions.

It has been shown in the past that different brain parcella-
tions using different anatomical atlas templates lead to differ-
ent classification success rate.21,22 In fact, each brain atlas
divides brain into unique set of regions. The parcellation

achieved using one anatomical atlas template differs in terms
of the number of regions, and the location and size of these
regions in the brain. So, each atlas template captures the fea-
tures of brain from a unique perspective. The atrophy fea-
tures extracted from multiple atlases provide complementary
information. Here, we hypothesize that higher classification
accuracy can be achieved if we combine the atrophy patterns
extracted based on the parcellation of brain using more than
one atlas.

In this work, we have divided the brains into two well-
known anatomical atlas templates that is Automated Anatomi-
cal Labeling (AAL)23 and LONI Probabilistic Brain Atlas
(LPBA40),24 and extracted regional features form structural
MRI and FDG-PET modalities. We have combined the features
extracted from both the atlas templates to utilize the comple-
mentary information provided by these templates. Discriminat-
ing regions of both the atlas templates were also analyzed.

The rest of the article is structured in the following
sequence. Proposed method is given in Section 2 of the
manuscript. Sections 3 and 4, respectively, present perform-
ance measures and experimental results in detail. Conclusion
is provided in Section 5.

2 | PROPOSED METHODOLOGY

In this article, we have proposed an AD and MCI classifica-
tion technique that comprises several steps such as image
acquisition, pre-processing, brain parcellation, feature extrac-
tion, feature reduction and classification. The sequential flow

FIGURE 1 The atrophy in AD andMCI shown by structuralMRI scans, and altered metabolic rate of glucose in AD andMCI shown by FDG-PET
scans [Color figure can be viewed at wileyonlinelibrary.com]
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of these steps is described in Figure 2, and the following text
describes these steps in detail.

2.1 | Image acquisition

The data used in this research work (structural MRI, FDG-
PET and clinical diagnosis of AD, MCI or CN) was
downloaded from the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) database,25,26 which is public database hosting
more than 800 images. The baseline three-dimensional
structural MRI images were acquired by using T1 weighted
gradient echo sequences on 1.5 Tesla and 3.0 Tesla scanners.
To acquire FDG-PET images, venous injection of 18F-FDG
was given to patients and images were acquired after 40–60
minutes in a resting-state dark room.

2.2 | Preprocessing

The preprocessing comprises segmentation, spatial harmoni-
zation and smoothing of structural MRI images. Briefly, we
do anterior commissure (AC)-posterior commissure (PC) cor-
rection on all the images, and use the N3 bias correction
method to correct the intensity inhomogeneity. Next, we do
skull-stripping on structural MR images using a brain extrac-
tion tool.27 After removal of cerebellum, FAST in the FSL
package is used to segment structural MR images into three
different tissues: gray matter (GM), white matter (WM) and
cerebrospinal fluid (CSF).

FDG-PET images are normalized using an existing FDG-
PET template, prepared from MRI and FDG-PET scans of 50

cognitively normal individuals used in this study. Smoothing of
8-mm full-width half-max is applied on the resultant images.

2.3 | Brain parcellation

To analyze the effect of atlas (template)-based region of inter-
est (ROI) analysis on the classification performance of AD and
MCI, we utilized two brain templates in this study: AAL and
LPBA40 templates. Both these are well-known atlases and
have been utilized in various research studies in the last decade
for brain parcellation into different anatomical regions.

The AAL atlas comprises 116 ROIs, which include 26
cerebellar regions and 90 cerebral regions. The LPBA40
atlas, however, comprises 56 ROIs, which include brainstem
and cerebellum regions along with 54 cerebral regions.

2.4 | Feature extraction

Using each brain atlas, we calculated two types of features that
is features from structural MRI and features from FDG-PET.
From the structural MRI, we calculated the average GM value
from each ROI, and from FDG-PET we calculated average rel-
ative cerebral metabolic rate for glucose in each ROI.

There is a rationale behind using ROI-based features.
Whole brain-based features suffer the drawback of dimen-
sionality, as the numbers of features are typically much
larger than the size of the available subjects. When the num-
ber of features is high relative to the number of subjects in
the training set, it is possible that classification rules yielding
high accuracy on the training set were originated only by

FIGURE 2 Multi-modal, multi-atlas classificationmethod for AD andMCI detection [Color figure can be viewed at wileyonlinelibrary.com]
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chance. This can lead many algorithms to select classification
rules that could fail to generalize to new data.28 Conse-
quently, features are either reduced using supervised or unsu-
pervised feature-reduction methods, or are extracted from
pre-defined atlases and adaptive regions to reduce dimen-
sionality. We adopted the second approach and extracted fea-
tures from ROIs. These features were combined in the end to
get final feature set for each atlas. Another feature set was
obtained by combining the MRI and FDG-PET features
extracted from both the atlases. This process led us to a total
of three features sets (two feature sets from individual atlas,
and one combined feature set from both the atlases). Figure 3
shows the feature concatenation process. In the figure,
AALi_G and AALi_M, respectively, shows the regional GM
volume and regional metabolic rate of glucose calculated via
AAL atlas. Similarly, LPBi_G and LPBi_M, respectively,
show the regional GM volume and regional metabolic rate of
glucose calculated via LPBA40 atlas. The feature sets from
individual atlases have also been used for the classification
to prove the hypothesis that the feature set obtained from
two atlases is better than the feature sets obtained from either
of the individual atlases.

2.5 | Feature reduction

Feature reduction is an important component of a classifica-
tion framework.29 Main purpose of feature reduction is to
reduce the dimensions of the input feature space and utilize a
smaller optimal subset of feature space, almost having simi-
lar classification ability to discriminate the subjects belong-
ing to different classes as the original, complete feature set.
Major benefit of feature reduction is that it finds non-
redundant, optimal and smaller feature set, which has
reduced noise, and also leads to reduced computational cost.

In this research study, principal component analysis (PCA)
was used as a feature reduction procedure. The theoretic prin-
ciples of PCA were put forward by Pearson. PCA is a mathe-
matical transformation, which transforms the correlated
variables of a feature set into uncorrelated variables.30 The
resultant uncorrelated variables are termed as principal compo-
nents of the feature set. The PCA transformation (orthogonal)

makes sure that principal component 1 (PC1) bears maximum
variance of the data, and each following principal component
(PC2, PC3, . . .) preserves orthogonality with preceding PCs
and also holds maximum possible variance of the feature set.
It has been extensively used in the past for reducing dimen-
sionality of medical data.31 We started from one PC and kept
on adding subsequent PCs until there was no increase in the
performance and the remaining PCs were simply discarded.

2.6 | Classification

SVMs32 are the most extensively used classification methods
for medical images.33–36 SVM has also been the most popu-
lar choice of the researchers for AD and MCI prediction.16

To focus on the performance comparison of features
extracted from individual atlases and the combined features
of both the atlases, we used radial basis function (RBF) ker-
nel of SVM. The optimal value of the parameters of the RBF
SVM that is C (cost of constraint violation) and gamma
(width) has been determined through grid search. The values
of these parameters have been varied in a suitable range to
determine the optimal value for these parameters.

We used leave-one-out (LOO) cross-validation, which is
the most widely used case of K-fold cross-validation. In one
particular iteration of LOO cross-validation, one subject was
left out as a test subject, and the classifier trained on the remain-
ing n-1 subjects was applied on the hold out test subject.

2.7 | Software’s availability
This algorithm has been implemented in Matlab. Upon publi-
cation of this article, code will be made publicly available.

3 | PERFORMANCE EVALUATION
MEASURES

We evaluated the classification capability of the proposed
framework via following performance metrics.

3.1 | Classification accuracy

Classification accuracy is a measure of the overall classifica-
tion ability of the classification framework. It can be calcu-
lated by

Accuracy5
TRP1TRN

TRP1FLP1TRN1FLN
3100;

where
TRP5 # of correctly identified positive patients
TRN5 # of correctly identified negative patients
FLP5 # of incorrectly identified positive patients
FLN5 # of incorrectly identified negative patients

FIGURE 3 Combination of features extracted frommultiple modal-
ities and multiple atlases [Color figure can be viewed at wileyonlineli-
brary.com]
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3.2 | Sensitivity (specificity)

Sensitivity (specificity) is a measure of the percentage of
positive (negative) samples, which are correctly identified by
the classification framework. These measures can be formu-
lated by the following formulas.

Sensitivity5
TRP

TRP1FLN

� �
3100

Specificity5
TRN

TRN1FLP

� �
3100

3.3 | Receiver operating characteristic (ROC)
curve

ROC curve provides a graphical method to visualize (charac-
terize) the classification framework over its entire operating
range. In ROC curve, true positive rate is plotted on the
x-axis, whereas false positive rate is plotted on the y-axis.

3.4 | F-Measure

F-Measure makes use of precision-rate and recall-rate to
calculate effectiveness of classification.

Precision2Rate5
TRP

TRP1FLP
;

Recall2Rate5
TRP

TRP1FLN

F-Measure can be calculated via following equation. It
ranges [0 1], where 0 is the least and 1 is the maximum
possible value.

F2measure52 � Precision2Rate3Recall2Rate
Precision2Rate1Recall2Rate

� �

3.5 | Kappa statistic

Kappa is a rate of agreement between the two raters. The
rater can be anything, a computerized method or a human
expert. In this search study, Kappa has been used to measure
the agreement between the ground truth status of a patient
and the status calculated by the classification framework.

4 | EXPERIMENTAL RESULTS

4.1 | Dataset

The data used in this research work was downloaded from
ADNI database25,26 as we have already discussed. The gen-
eral eligibility criteria for ADNI subjects are given at www.
adni-info.org. Briefly summarizing the data, subjects have
ages ranging from 55 to 90 years, having a companion who

was able to provide an independent assessment of function-
ing abilities.

General inclusion and exclusion criterion for the subjects
from ADNI are as follows:

� Cognitively normal: Mini-Mental State Examination (MMSE)
scores ranging from 24 to 30, a Clinical Dementia Rating
(CDR) of 0, non-demented, non-depressed and non-MCI.

� MCI patients: MMSE scores ranging from 24 to 30, a
CDR of 0.5, having considerable memory loss evaluated
by Wechsler Memory Scale Logical Memory II scores
which were education adjusted, no other significant cogni-
tive impairment, essentially performing well in daily rou-
tine tasks, and no evidence of dementia.

� AD patients: MMSE scores ranging from 20 to 26, a CDR
of 0.5/1.0, and meets the National Institute of Neurological
and Communicative Disorders and Stroke and the Alzhei-
mer’s Disease and Related Disorders Association
(NINCDS/ADRDA) criteria for AD.

In this paper, we focused only on those ADNI subjects,
which have structural MRI and FDG-PET baseline data
available. We randomly picked 300 subjects including 100
AD, 100 MCI and 100 CN subjects from the subjects having
both the modalities available. More details about the dataset
are provided in Table 1.

4.2 | Classification of AD, MCI and CN

Here, we have three classes, so we have divided the problem
into the three different classification problems:

� AD versus CN

� AD versus MCI

� MCI versus CN

For each of these three classification problems, the features
from each modality that is structural MRI and FDG-PET

TABLE 1 Baseline characteristics of 300 participants

Baseline characteristics of participants

Characteristic AD MCI CN

No. of subjects 100 100 100

Male 64 58 49

Female 36 42 51

Average age (years) 71.4 70.5 69.5

Age (SD) 06.7 06.8 03.8

Average education (years) 12.3 11.8 12.5

Education (SD) 03.3 03.1 04.2
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were extracted by using two atlas templates that is LPBA40
and AAL. These features were combined to generate a
hybrid feature set. The features were reduced using PCA as
already described in the methods section, and were given as
input to the classification algorithm.

We hypothesized that hybrid feature set (AAL1

LPBA40) will produce better performance than individual
atlas-based features (AAL, LPBA40). Therefore, to compare
their performance, individual and hybrid features were given
as input to classifiers. In addition, we also hypothesized that
PCA-based feature reduction helps in better performance
when compared with raw feature set. Therefore, to analyze
the effect of PCA-based feature reduction on classification
performance, the original and reduced features were used for
the classification.

Figure 4 shows the overall performance of the feature
sets extracted from individual and hybrid atlases for different
problems. It also shows the performance of original feature
set and the feature set reduced by PCA (with optimal number
of principal components). We obtained 94%, 76.5% and
75.5% classification success rate for AD versus CN, CN ver-
sus MCI and MCI versus AD subjects, respectively. Overall
the results are very encouraging leading to the conclusion

that classification performance improves once features
extracted from different atlases are combined. Different
atlases have different parcellation mechanisms and they par-
cellate the brain into different number of anatomical regions
spanning slightly varying regions on the brain. Therefore,
when the features are combined from multiple regions, they
reinforce each other and classification performance increases.
Another fact that we can conclude from Figure 4 is that the
reduced feature set, after applying PCA, proves to be very
helpful by eliminating unimportant features from the given
feature set, and thus increases the classification accuracy. In
all the classification experiments (ie, AD/CN, CN/MCI,
MCI/AD) shown in Figure 4, the classification accuracy
obtained by using optimal number of PCA components is
significantly better compared to the classification accuracy
obtained by using all the features.

We have also measured the performance of the features
extracted from the individual and the hybrid templates in terms
of sensitivity and specificity. The results are given in Table 2,
where we see nearly equal sensitivity and specificity in all the
cases, which shows that the extracted features are not biased
toward any class and are equally capable of distinguishing the
subjects of all the classes that is AD, MCI and CN.

We have also calculated the performance of the extracted
features in terms of Kappa statistics and F-Measure. Corre-
sponding results are given in Figure 5. Overall these results
are also promising leading us to the same conclusion.

In all the cases, we see better classification performance of
AD versus the CN subjects. This is inspiring and is consistent
with the literature as well where we see better separation
among CN and AD subjects compared to other subject groups.
The reason of better classification performance for this subject
group is that the AD subjects have much more atrophy com-
pared to the normal aging therefore show higher variation in
terms of the gray matter volume and relative cerebral meta-
bolic rate for glucose in different parts of the brain compared
to CN. MCI group, however, is very heterogeneous and shows
a stage on a continuum of progression from CN to AD group.
Some of the subjects in MCI group are the stable MCIs
(sMCI), which do not progress to AD for a certain period of
time and show atrophy similar to CN subjects. Similarly, some
MCI subjects are progressive MCIs (pMCI) and they

FIGURE 4 Classification accuracy of the individual (AAL, LPBA40) and hybrid (AAL1LPBA40) feature sets: (A) CN versus AD, (B) CN versus
MCI, (C)MCI versus AD [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Performance measures for individual and hybrid atlas-
based features for different datasets by using optimal number of PCA
components

Accuracy Sensitivity Specificity

CN versus AD

AAL 83.5 0.79 0.88
LPBA40 88.5 0.90 0.86
AAL1LPBA40 94.0 0.95 0.93

CN versus MCI

AAL 70.0 0.70 0.70
LPBA40 71.5 0.72 0.71
AAL1LPBA40 76.5 0.78 0.75

MCI versus AD

AAL 63.0 0.64 0.62
LPBA40 68.5 0.70 0.67
AAL1LPBA40 75.5 0.71 0.80
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transform to AD group within the length of follow-up period.
Therefore, we believe that when all the MCI subjects are
grouped as one entity, classification accuracy between CN and
MCI group decreases due to sMCI subjects, and decreases
between AD and MCI classification due to pMCI subjects.

4.3 | Performance analysis in terms of ROC
curves

ROC curves are another very common way of reporting
results for a binary classifier. The ROC curve plots the sensi-
tivity against “1-specificity” by changing the discrimination
threshold and therefore provides a complete picture of classi-
fier’s performance. The ROC curve is usually summarized
by the area under the curve (AUC), which is a number
between 0 and 1. The ROC curves are shown in Figure 6 for
different data subsets. The ROC curves here are quite prom-
ising and show that the classifiers have been properly trained
in all the cases, and do not lead to any bias in any case. The
ROC curves for all the cases are well above the chance, espe-
cially for the classification between AD and CN groups,
which is again consistent with all the performance measures
we are calculating here.

4.4 | Influence of PCA on the classification
rate of different patient groups

Inspired by existing literature on the use of PCA for medical
images,37 we have also analyzed the performance of the

individual and hybrid atlas-based features in terms of the
number of principal components selected by the PCA. In
fact, the number of components has been varied from mini-
mum of 2 to a maximum value of 15, and the performance
of different datasets extracted from different individual and a
hybrid atlas has been investigated. The results for this experi-
ment are given in Figure 7.

These figures show that the classification performance
increases with an increase in the number of principal compo-
nents, and then reaches to a maximum value at generally 10–
11 number of components in all the cases. The classification
performance either remains the same after adding more com-
ponents, or it deteriorates, thereby showing that 10–11 num-
bers of principal components are enough in these cases and
addition of more components leads to noisy feature in the
feature set. An analysis of the variance captured by various
principal components is given in Figure 8.

4.5 | Performance evaluation of the proposed
method using other classification models

We have also compared the performance of the RBF classi-
fier against other kernels of SVM such as linear, polynomial
and sigmoid (see Table 3). The performance using RBF ker-
nel is indeed better than other kernels of SVM. The better
performance of RBF kernel may be attributed to the better
generalization capability of RBF kernel on unseen popula-
tions. In addition, we have also shown the performance of
diseased versus healthy groups by combining AD and MCI
in one group and classifying them against CN group.

4.6 | Important brain regions involved in AD
and MCI classification

In the end, we have also analyzed the important regions per-
taining to AD and MCI detection. The classification process
was repeated 100 times, and the features which were mostly
ranked on top by the SVM classifier were noted down.
Among these features, the features extracted from hippocam-
pus and amygdala seems to have better performance com-
pared to features of other regions. Figure 9 lists the regions
which were mostly used by the SVM classification. The x-
axis in the figure shows the number of times any feature was

FIGURE 5 Performance measures for individual and hybrid atlas-based features for different datasets at optimal number of PCA components,
(A) F-Measure, (B) Kappa statistics [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 ROC curve for the hybrid atlas-based features
(AAL1LPBA40) at the optimal number of PCA components for AD
versusMCI, AD versus CN and CN versusMCI subjects [Color figure
can be viewed at wileyonlinelibrary.com]
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selected amongst the top 5 by SVM classifier, and the y-axis
shows the name of the regions. Out of the 116 regions of
AAL atlas, 28 regions were selected amongst the top five,
and out of the 56 regions of LPBA40 atlas, 24 regions were
selected. The left hippocampus was in the highest rank in
AAL, which is consistent with the results of the VBM analy-
sis. In LPBA40, the right middle frontal gyrus was ranked
second following the left inferior occipital gyrus.

The results indicate that LPBA40 template yields better
classification success rate compared to AAL in all the cases
despite having more number of regions in AAL compared to
LPBA40. The possible explanation for this phenomenon can
be that AAL atlas is based on single-subject brain, whereas
the LPBA40 atlas has been developed based on a population,

therefore a single subject-based atlas may not be sufficient
enough to divide brain into more meaningful regions.

4.7 | Performance comparison of the
proposed method with existing methods

We have compared the performance of the proposed multi-
atlas, multi-modal classification framework with existing
techniques of AD and MCI classification. We selected two
techniques, each from voxel as features based methods, fixed
atlas-based and adaptive atlas-based methods.

Amongst the selected voxel as features based methods,
Kl€oppel et al.3 and Casanova et al.2 used GM density map
of the entire brain, respectively, together with SVM and
large-scale regularization approach. Amongst the fixed atlas-
based methods,4,18 Magnin et al., used AAL to parcellate the
brain image into 116 regions, and then used the relative
weight of the GM, compared to that of the WM and CSF, for
each parcellated region to develop a feature vector for SVM-

FIGURE 7 Classification performance of individual and hybrid atlas-based features from different datasets at different number of principal
components selected by PCA. (A) AD versus CN, (B) CN versusMCI, (C)MCI versus AD [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 8 Percentage variance captured by the principal components
for the three classification problems [Color figure can be viewed at
wileyonlinelibrary.com]

TABLE 3 Performance evaluation of the proposed method (hybrid
features) in terms of classification accuracy using various kernels of
SVM by using optimal number of PCA components in each case

RBF Linear Sigmoid Polynomial

CN versus AD 94.0 89.5 88.5 88.5

CN versus MCI 76.5 72.5 70.5 71.0

MCI versus AD 75.5 70.0 68.5 69.0

MCI1AD versus CN 85.5 83.5 83.5 80.0
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based AD classification.4 Dai et al. used regional GM volu-
metric measures and functional measures as features.18 They
trained separate maximum uncertainty LDA classifiers on the
structural and functional measures, and combined the output
of the classifiers via weighted voting.

In addition, two methods from adaptive atlas-based meth-
ods were also chosen for comparison. First, Min et al.

derived multiple atlases from the non-overlapping clusters of
subjects,19 obtained using affinity propagation.38 They regis-
tered subjects to the atlases and adaptively calculated a set of
ROIs and volumetric features in each atlas space. The top-
most K discriminating features calculated from each atlas
space were combined for SVM-based classification. Subse-
quently, Liu et al. argued that the features extracted from K
sets of adaptive ROIs are different representations of the
same subject,20 and should not be concatenated, as in a pre-
vious study.19 To resolve this, Liu et al. registered subjects
to different selected atlases and extracted features from
adaptive regions of each atlas-registered image, viewing that
image as the main source, and all other atlas registered-
images as adjunctive sources.20 SVM was separately trained
on features extracted from each set and the results of multiple
sets were combined using majority voting.

We evaluated the performance of these techniques on
ADNI dataset described in Table 1. Table 4 provides a per-
formance comparison of our method with those of existing
techniques.

Our proposed approach has produced highest classifica-
tion accuracy (94.00%) for AD versus CN classification,
which is 4.80% higher than the highest accuracy yielded by
Min et al.19 and 20.56% higher than the lowest accuracy
yielded by Casanova et al.2 Similarly, there is a significant
increase (9.25%) in classification accuracy of CN versus
MCI compared to Liu et al.20 The performance of the pro-
posed approach is boosted due to the proposed hybrid fea-
tures computed from multiple atlases. It can be concluded
reasonably that the better performance of the proposed
method is attributed to the fact that previous schemes take
one atlas-based features for classification. These features rep-
resent brain atrophy from one perspective and do not capture
atrophy from multiple perspectives. Contrary, our proposed
AD and MCI classification framework uses rich feature set
captured from multiple atlases wherein each individual fea-
ture set, calculated from one atlas, captures potentially exclu-
sive atrophy patter of the disease. The results suggest that
when features extracted from individual atlases are com-
bined, they reinforce each other and produce better classifica-
tion compared to the classification achieved by features of
one atlas.

5 | CONCLUSION

This paper presents a new method that first quantifies the
atrophy in the brain of AD and MCI subjects by parcellating
brain images into several anatomical regions based on two
atlas templates and extracting features of those regions.
Later, it combines the quantitative features extracted from
both the templates. PCA-based feature reduction has been
applied to select the discerning features from the dataset.

FIGURE 9 Final bar plots of the features of the individual brain
atlases calculated by SVM. (A) AAL atlas, (B) LPBA40 atlas [Color figure
can be viewed at wileyonlinelibrary.com]

TABLE 4 Comparison of the classification capability of the pro-
posed method with existing AD detection techniques

Classification techniques
CN versus
AD

CN versus
MCI

MCI
versus AD

Voxels as features-based methods

Kl€oppel et al. [3] 74.12 62.25 71.87
Casanova et al. [2] 73.44 59.12 71.56

Fixed atlas-based methods

Magnin et al. [4] 88.98 57.15 81.78
Dai et al. [18] 87.45 62.56 83.12

Adaptive atlas-based methods

Min et al. [19] 93.20 66.15 86.56
Liu et al. [20] 90.45 67.25 89.45
Proposed method
(hybrid features1 PCA)

94.00 76.50 75.50
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Working with ADNI dataset, we show that the proposed
hybrid atlas-based method quite effectively captures the atro-
phy in diseased subjects when compared with the atrophy
patterns extracted from one atlas only, and hence leads to
effective classification results. Furthermore, we have also
separately analyzed the classification capabilities of the fea-
tures extracted from each atlas template separately to deter-
mine the performance advantage achieved due to hybrid
atlas-based features. We have also analyzed the performance
advantage we get by applying PCA when compared with
original features. The results show that multiple atlases cap-
ture the brain atrophy from different perspectives, and hence
lead to rich and effective feature set that in turn leads to bet-
ter classification accuracy. This work can be extended in
numerous possible ways. For instance, ensemble of various
different classifiers can be developed for classification. Simi-
larly, features from more than two atlases can be combined
to get better and more effective feature set.
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