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Abstract—This work focuses on implementing the optimal
power flow (OPF) problem, considering wind, solar and hy-
dropower generation in the system. The stochastic nature of
renewable energy sources (RES) is modelled using Weibull, Log-
normal and Gumbel probability density functions. The system-
wide economic aspect is examined with additional cost functions
such as penalty and reserve costs for under and overestimating
the imbalance of RES power outputs. Also, a carbon tax is
imposed on carbon emissions as a separate objective function
to enhance the contribution of green energy. For solving the
optimization problem, a simple and efficient augmentation to the
basic grey wolf optimization (GWO) algorithm is proposed, in
order to enhance the algorithm’s exploration capabilities. The
performance of the new augmented GWO (AGWO) approach,
in terms of robustness and scalability, is confirmed on IEEE-
30, 57 and 118 bus systems. The obtained results of the AGWO
algorithm are compared with modern heuristic techniques for a
case of OPF incorporating RES. Numerical simulations indicate
that the proposed method has better exploration and exploitation
capabilities to reduce operational costs and carbon emissions.

Index Terms—Optimal power flow, Renewable energy sources,
Carbon emission, Meta-heuristic techniques

I. INTRODUCTION

Optimal power flow (OPF) has proved to be an essential tool
for the efficient and secure operation of power networks since
its inception. The main objective of OPF is to find optimal set-
tings of the control variables with certain objective functions
while satisfying system equality and inequality constraints.
The system control variables that need adjustment include
generated active power, the voltage of all generation buses
and tap settings of the transformer. During the optimization
process, system constraints such as transmission line capacity,
power flow balance, voltage profile of all buses and generator
capability constraints need to be maintained.

OPF with only traditional thermal power generators (TPGs)
is widely studied in the literature [1]. However, with increased
penetration of RES, it is necessary to incorporate associated
uncertainty into the power network. Under recent studies, sys-
tems that consider both TPGs and RES are in pursuit of similar
objective functions studied in the past [2]–[6]. The work in
[2] conducts an extensive study on the over/underestimation
of wind power generation (WPG) in the classical economic
dispatch model. In this study, the Weibull probability density
function (PDF) is used to model the uncertainty of WPG
output. For economic dispatch strategies, it provides valuable

insight into the integrated wind system. However, the chal-
lenge of wind speed variation on the optimal dispatch schedule
of power plants remains unaddressed. Also, the reactive power
capability of WPGs, bus voltage constraints and loading effect
of transmission line were not considered in [3].

Authors in [4] combined advanced variant of differential
evolution with an effective constraint handling technique for
a system that considers both solar and wind power generation
in the OPF problem. The uncertain and intermittent nature of
both RES were modelled with lognormal and Weibull PDFs.
However, the resulting SHADE-SF algorithm sometimes at-
tains premature convergence (i.e., becomes trapped in a local
solution) and the convergence rate can be prolonged. The
scalability and robustness of the proposed algorithm were not
verified since the algorithm was only verified on the IEEE-
30 bus system. This does not guarantee good performance
over medium and higher bus systems (IEEE-57 and IEEE-
118). In general, OPF with the incorporation of RES needs
further attention.

II. MATHEMATICAL MODEL

In this work, the IEEE-30, 57 and 118 bus systems are
used to validate the performance of the proposed AGWO
algorithm in the OPF problem. The essential characteristics
of these bus systems are provided in Table I. Along with
the TPGs, RES such as wind, solar and small hydro (WSH)
generators are selected as power generation sources for the
OPF framework. The power output from RES is variable in
nature and power output instability needs to be minimized and
balanced by the aggregation of the power outputs of all the
generators and spinning reserve. Thus, total power generation
cost is the combination of operating cost of all generators,
reserve and penalty cost (due to the intermittent nature of
power generation from RES). In subsequent subsections, cost
models are discussed in detail.

A. Stochastic Wind Power
The behaviour of the wind speed v(m/s) distribution can

be modelled with the help of Weibull PDF fv(v) by adjusting
scale parameter c and shape parameter k as established by
[3] and [4]. The probability of wind speed during any time
interval is expressed as follows:

fv(v) =
k

c
(
v

c
)k−1 exp

[
−(v

c
)k
]
, 0 < v <∞ (1)
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In the modified IEEE-30 bus system, TPGs at bus 5 and bus 11
are replaced with the WPGs. The values for scale c and shape
k parameters are given in Table II. The wind speed behavior
for WPG 1 and WPG 2 at buses 5 and 11 follow the Weibull
PDF. For each WPG, the relationship between wind speed and
output power is expressed in Eq. 2 [3]:

PW =


0, v < vci or v > vco

PWr, vr < v ≤ vco
PWr(

v−vci
vr−vci ), vci ≤ v ≤ vr,

(2)

where v is forecasted wind speed in m/s, vci, vco and vr are
cut-in, cut-out and rated wind speeds, PWr is rated output
power for the WPG.

B. Stochastic Solar Power
Similarly, the TPG at bus 13 of the modified IEEE-30 bus

system is replaced with the solar power generator (SPG). The
output power from SPG depends upon the solar irradiance
which follows lognormal PDF. The probability with standard
deviation λ and mean σ can be calculated as follows [4]:

fX(X) =
1

Xσ
√
2π

exp

{
−[lnX − λ]2

2σ2

}
, X > 0 (3)

The values for λ and σ are given in Table II. The relationship
between the solar irradiance X (W/m2) and output power of
SPG is expressed as follows:

PS(X) =


PSr(

X2

XstdCI
), 0 < X < CI

PSr(
X
Xstd

), X > CI ,

(4)

where X is forecasted solar irradiance, Xstd is standard solar
irradiance value set as 800 W/m2, CI is certain irradiance
point (120W/m2) and PSR is rated SPG power output.

C. Stochastic Hydropower
It is well known that the Gumbel distribution is followed

for river flow rate calculations. The probability calculation of
Gumbel distribution for river flow rate with scale parameter ω
and location parameter γ is formulated in Eq. 5 [5]:

fH(Gh) =
1

ω
exp

[
− (Gh − γ)

ω
) exp

[
− exp

(Gh − γ)
ω

]]
(5)

In the modified IEEE 30-bus system, the conventional TPG
at bus 13 is replaced together with 45 MW SPG and 5 MW
small HPG. Table II provides PDF values for these fittings and
many of these values are realistically chosen in a study given
by Ref. [5]. The output of HPG as a function of pressure head
and water flow rate is calculated as follows:

Ph(Gh) = αβgGhPh (6)

where α and β represent efficiency of the generating unit and
density of water volume, respectively. The numerical values
for calculation of HPG output are assumed: α = 0.85, β 1000
kg/m3, Ph = 25m and g = 9.81m/s2.

D. Cost Model for Thermal Power Generators
TPGs require fossil fuel for their operation. The relationship

between generated power (MW) and fuel cost ($/h) can be
calculated with the help of following quadratic equation:

CT =

NT∑
i=1

ai + biPTg,i + ciP
2
Tg,i (7)

Practically, the valve point loading effect needs to be con-
sidered to model accurate cost function. Hence, the overall
thermal power generation cost ($/h) becomes:

CT =

NT∑
i=1

ai + biPTg,i + ciP
2
Tg,i+∣∣∣∣di × sin(ei × (PmTg,i − PTg,i)

)∣∣∣∣ (8)

where ai, bi, ci are the cost coefficients and di, ei are fuel
cost coefficients for the i-th TPG. PTg,i is the output power,
NT is total number of the TPGs in the system and PmTg,i the
minimum power when i-th TPG is in operation. All emission
and cost coefficients pertaining to TPGs are given in Table III.

E. Cost Model for Renewable Energy Sources
The total cost of the RES consists of the direct cost associ-

ated with scheduled power, reserve cost for overestimation and
penalty cost for underestimation. These models are developed
in line with the concept presented in Refs. [3]–[6].

The direct, reserve and penalty costs of WPG as a function
of scheduled power are represented in Eqs. 9–11 as follows:

CDW,j = dw,jPWS,j (9)

CRW,j = rw,j

∫ PWS,j

0

(PWS,j −W )fw(W )dW (10)

CPW,j = pw,j

∫ PWR,j

PWS,j

(W − PWS,j)fw(W )dW (11)

where dw,j , rw,j and pw,j are direct, reserve and penalty cost
coefficients pertaining to j-th WPG. PWS,j is the scheduled
power and fw(W ) is PDF of same WPG.

The total cost of WPG can be calculates as:

CTW,j = CDW,j + CRW,j + CPW,j (12)

Likewise, the SPG also has uncertain power output. The direct,
reserve and penalty costs pertaining to the k-th SPG are
represented as:

CDS,k = ds,kPSS,k (13)

CRS,k = rs,k · Pr(PAS,k < PSS,k)·
[(PSS,k − E(PAS,k < PSS,k)] (14)

CPS,k = ps,k · Pr(PAS,k > PSS,k)·
[(E(PAS,k > PSS,k)− PSS,k] (15)

In Eqs. 13–15, ds,k, rs,k and ps,k are direct, reserve and
penalty cost coefficients pertaining to k-th SPG. PAS,k and
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TABLE I: Characteristics of Bus Systems under Consideration

Items IEEE-30 Bus System IEEE-57 Bus System IEEE-118 Bus System
Quantity Details Quantity Details Quantity Details

Number of buses 30 [4] 57 [5] 118 [1]
Number of branches 41 [4] 80 [5] 186 [1]

Number of TPGs 3 Connect at bus 1 (Swing),
2 and 8 5 Connect at bus 1 (slack),

3, 8 and 12 54 [1]

Number of WPGs 2 Connect at bus 5 and 11 2 Connect at bus 2 and 6 2 Connect at bus 5 and 11
Number of SPGs 1 Connect at bus 13 1 Connect at bus 9 1 Connect at bus 9
Number of HPG 1 Connect at bus 11 1 Connect at bus 11 1 Connect at bus 11
Connected load — 283.4 MW, 126.2 MVAr — 1250.8 MW, 336.4.2 MVAr — 4242 MW, 1439 MVAr
Control variables 24 —– 33 —– 120 —–
Load bus voltage
range 24 [0.95-1.06] p.u. 50 [0.94-1.06] p.u. 64 [0.94-1.06] p.u.

TABLE II: PDF Parameters for Wind, Solar and Hydropower Generation [5], [7].

Wind power generation plants Solar + Hydropower generation plant (bus 13)

Windfarm # No. of
wind turbines

Total rated
power

Weibull PDF
parameters

Rated power
of SPG

Lognormal PDF
parameters

Rated power
of HPG

Gumbel PDF
parameters

1 at bus 5 25 75 MW c = 9, k = 2 45 MW λ = 6, σ = 0.6 5 MW ω = 15, γ = 1.22 at bus 11 20 60 MW c = 10, k = 2

TABLE III: Thermal Power Generators Cost and Emission Coefficients for the System [4], [7].

Thermal generator Bus number a b c d e f g h k l
TPG1 1 0 2 0.00375 18 0.037 4.091 -5.554 6.49 0.0002 6.667
TPG2 2 0 1.75 0.0175 16 0.038 2.543 -6.047 5.638 0.0005 3.333
TPG3 8 0 3.25 0.00834 12 0.045 5.326 -3.55 3.38 0.002 2

PSS,k represent available and scheduled power from SPG.
Finally, the total cost of SPG can be calculated as:

CTS,k = CDS,k + CRS,k + CPS,k (16)

As a third RES, we consider a small hydropower generator
(HPG) in this study. The output of HPG is very less (10–20
% of total install capacity) [5]. It is therefore combined with
SPG and assumed to be owned by a single private operator.
Following Eqs 13–15, the direct, reserve cost for overestima-
tion and penalty cost for underestimation of combined solar
hydropower generation system is:

CSH = dsPSSH,s + dhPSSH,h (17)

CRSH = rsh,m · Pr(PASH < PSSH)·
[(PSSH − E(PASH < PSSH)] (18)

CPSH = psh,m · Pr(PASH > PSSH)·
[(E(PASH > PSSH)− PSSH ] (19)

where PSSH,s and PSSH,h represent scheduled power from
SPG and HPG, respectively. dh,m, rsh,m and psh,m are direct,
reserve and penalty cost coefficients pertaining to m-th HPG.
PASH and PSSH represent available and scheduled output
power from combined solar hydropower generator. Finally, the
total cost of HPG is calculated as follows:

CTSH = CDSH + CRSH + CPSH (20)

F. Carbon Tax based Emission Model
Unlike RES, producing power from TPGs emits the harmful

gases into the environment. The emission E (ton/h) is calcu-
lated as follows:

FC =

NT∑
i=1

[(ai + biPTi + ciP
2
Ti)× 0.01 + die

liPTi ] (21)

The combustion fossil fuels on which TPGs run is the main
source of greenhouse gases (GHGs) emission. To control
GHGs and make clean energy economy, the carbon emission
tax (emission cost) is modelled as follows:

CE = E · Ctax (22)

where CE is the emission cost and Ctax represents the carbon
tax per unit of carbon emission.

III. PROBLEM FORMULATION

The main objective of the OPF problem is formulated by
incorporating all the cost functions described in the above
sections. The first objective F1 of the optimization problem is
to achieve a minimum total generation cost. However, emission
cost is not included in its formulation. To analyze the impact of
the carbon tax on generation scheduling, the second objective
F2 is modelled by adding the carbon emission cost within the
first objective function.

The objective is as follows: Minimize

F1 =

NT∑
i=1

CTG +

NW∑
j=1

CTW +

NS∑
k=1

CTS +

NSH∑
m=1

CTSH (23)
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where NWg , NSg and NSHg are the numbers of WSH generators in
the system. The second objective F2 of the optimization is: Minimize

F2 = F1 + CE (24)

where CE is the emission cost, calculated in Eq. 22. Both OPF
objective functions in Eqs. 23 and 24 are based on system equality
and inequality constraints.

IV. THE GREY WOLF OPTIMIZATION ALGORITHM

In GWO algorithm [7], there are four different categories
of wolves namely alpha (α), beta (β), delta (δ) and omega
(ω) wolves. The optimization problem (fittest solution) is
accessed with the accurate determination of prey location in
search space while the wolves’ position relative to the prey
determines the best solution. The alpha wolves’ position is
considered to be the best solution found so far in the search
space because they are expected to be closer to the prey
than the other three wolves in the pack. To allocate their
position in the search space, these wolves are represented as
Xα, Xβ and Xδ . Fourth level ω wolves update their position
Xω following the relative position of the alpha, beta and
delta wolves. Finally, three main steps are adopted to achieve
hunting, namely searching, encircling and attacking the prey.
The prey encircling behaviour of the grey wolves is:
−→
X (t+1) =

−→
X p(t)−

−→
A×
−→
D where,

−→
D =|

−→
C×
−→
X p(t)−

−→
X (t) |
(25)

where t is current iteration,
−→
X p(t) is position vector for prey

location and
−→
X (t) is position vectors for grey wolf in search

space. The coefficient vectors
−→
A and

−→
C are calculated below:

−→
A = 2−→a ×−→r 1 −−→a and

−→
C = 2×−→r 2 (26)

Over the course of an iteration, exploration and exploitation
processes are controlled by

−→
A which further depends on −→a ,

−→r 1, −→r 2 are randomly generated vectors lies in the range of
[0, 1]. The current position of a grey wolf (X,Y ) is updated
with Eqs. 25–26 to reach prey position (Xp, Yp). Note that for
a population of grey wolves, the value of −→a is assumed same.
A wolf can update its position randomly in different places
nearer to the best agent by setting the values of

−→
A and

−→
C .

After approaching the prey, the grey wolves pursue and
encircle it. The alpha wolves make the decision and dictate
the pack for prey hunting (optimization). The beta and delta
wolves acknowledge and reinforce the pack activity towards
prey hunting. Initially, the top three level wolves (alpha, beta
and delta) position are saved as the ‘locations, indicating their
improved information to identify prey location. The remaining
fourth level search agents (omega wolves) obey these three
wolves. For alpha, beta and delta wolves, position location is
calculated as follows:
−→
Dα =|

−→
C 1 ×

−→
Xα(t)−

−→
X (t) |,

−→
Dβ =|

−→
C 2 ×

−→
Xβ(t)−

−→
X (t) |

(27)
−→
Dδ =|

−→
C 3 ×

−→
X δ(t)−

−→
X (t) |,

−→
X 1 =|

−→
Xα −A1 ×

−→
Dα | (28)

−→
X 2 =|

−→
Xβ −A2 ×

−→
Dβ |,

−→
X 3 =|

−→
X δ −A3 ×

−→
Dδ | (29)

−→
X (t+ 1) =

−→
X 1 +

−→
X 2 +

−→
X 3

3
(30)

At iteration t, the distance between
−→
X (t) and the three best

hunt agents (
−→
Xα), (

−→
Xβ) are (

−→
X δ) are determined using Eqs.

27–29, in which A1, A2 and A3 are random vectors as defined
in Eq. 26. Finally, wolves movement towards prey is updated
by Eq. 30.

V. AUGMENTED GREY WOLF OPTIMIZATION

In this work, we propose a new modification to augment
the exploration capabilities of the GWO algorithm without
affecting its flexibility, simplicity and global optimization
characteristics. In the GWO algorithm, parameter A is the most
important parameter responsible for controlling the exploration
and exploitation abilities in the search space stated in Eq. 26.
The value of A depends on a, which changes linearly from
2 to 0 in the GWO algorithm. In the proposed augmentation
(AGWO) algorithm, the value of parameter a changes ran-
domly and non-linearly from 2 to 1 to avoid stagnation given
in Eq. 31. Due to this modification, chances of exploration
gets higher than exploitation [8].

−→a = 2− cos(rand)× t/Max_iter (31)

In the original GWO algorithm, α, β and δ wolves are involved
in the hunting and decision-making process of the algorithm
as in Eqs. 27 and 28. However, in the proposed AGWO
algorithm, these processes are controlled only by α and β
wolves expressed as:

−→
Dα =|

−→
C 1 ×

−→
Xα(t)−

−→
X (t) |,

−→
Dβ =|

−→
C 2 ×

−→
Xβ(t)−

−→
X (t) |

(32)
−→
X 1 =|

−→
Xα −A1 ×

−→
Dα |,

−→
X 2 =|

−→
Xβ −A2 ×

−→
Dβ | (33)

−→
X (t+ 1) =

−→
X 1 +

−→
X 2

2
(34)

Due to the proposed augmentation, the AGWO gains many
advantages over the basic GWO algorithm. Some of these
are better convergence to find global optima, computational
efficiency and better exploration and exploitation capabilities.

VI. CASE STUDIES FOR IEEE-30 BUS SYSTEM

A. Case 1: Optimization of Total Generation Cost

The objective of Case-1 is to optimize the power gener-
ation schedule of all RES and TPGs to reduce total power
generation cost using Eq. 23. For illustrative purposes, the
values of direct, reserve and penalty cost coefficients for WSH
generation system are d = 1.6, r = 3 and p = 1.5, respectively.
The total generation cost achieved by AGWO is 781.13 $/h
and that of GWO is 781.77 $/h shown in Table IV. These
results are compared with the results obtained from ABC and
SHADE-SF algorithms, i.e., 784.24 $/h and 782.82 $/h. More
details about these algorithms can be found in Refs. [2] and
[4]. Fig. 1a shows that AGWO has faster convergence and less
computational time than the other three algorithms.
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Fig. 1: Convergence Characteristics of AGWO and Recent Techniques for Case-1–Case-6.

TABLE IV: Comparison Between AGWO and other Algorithms for IEEE-30 bus System using Case-1 and Case-2.

Case-I Case-II
Min Max (ABC) (SHADE-SF) [4] (GWO) [7] (AGWO) (ABC) (SHADE-SF) [4] (GWO) [7] (AGWO)

PTg,1 (MW) 50 140 131.4 130.6 129.6 130.1 108.4 109.6 109.8 108.1
PTg,2 (MW) 20 80 38.5 37.6 38.1 36.2 43.7 44.7 44.7 41.3
PWg,1 (MW) 0 75 37.5 43.8 48.9 39.5 42.8 43.5 42.4 41.7
PTg,3 (MW) 10 35 10.4 10 10 10 12.1 10.5 11.05 16.3
PWg,2 (MW) 0 60 39.8 40.0 37.8 40.1 44.0 43.9 43.9 43.7
PSg (MW) 0 50 31.2 31.9 31.9 32.8 36.9 35.7 36 36.3
Total cost ($/hr) 784.24 782.82 781.77 781.13 813.81 811.43 810.17 810.15
Elapsed time (Seconds) 367 272 279 230 395 272 286 246
Carbon emission (ton/h) 1.42 1.35 1.28 1.48 0.7 0.58 0.42 0.39

B. Case 2: Optimizing Fuel Cost and Carbon Emission

The main objective of Cas-2 is to minimize total generation
costs while imposing a carbon tax on the amount of carbon
emission from TPGs. Total generation cost, including the
carbon tax, is calculated with the help of Eq. 24. Carbon tax
(Ctax) is considered at the rate of $20/ton [4]. The optimized
generation schedule of all generators, total power generation
cost, values of carbon emissions and other parameters for all
algorithms are provided in Table IV. It is clearly depicted
that RES contribution gets higher when the carbon tax is
imposed in Case-2, compared to Case-1 (when there is no
tax on carbon emission). The obtained result of emission
gases by AGWO is 0.39259 ton/h, which is the lowest value
compared with 0.42503 ton/h, 0.58487 ton/h and 0.7049 ton/h
achieved by GWO, ABC and SHADE-SF, as given in Table
IV. The convergence properties of AGWO, basic GWO and

other approaches are shown in Fig. 1b.

VII. CASE STUDIES FOR IEEE-57 BUS SYSTEM

A. Case 3: Optimization of Total Generation Cost

The Case-3 objective is to minimize the power generation
schedule of three RES and TPGs to reduce total power
generation costs in the IEEE-57 bus system. It is identical to
Case-1 in the IEEE-30 bus system and the objective function
of the quadratic fuel cost is given in Eq. 23. The total cost
achieved by the AGWO algorithm is 21215 $/h, which hits the
best minima in search space compared to the ABC, SHADE-
SF and GWO. The fuel cost value by ABC is 21262 $/h, by
SHADE-SF is 21260 $/h and by the GWO is 21247 $/h, as
given in Table V. The convergence properties of AGWO and
recent optimization methods are presented in Fig. 1c.
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TABLE V: Simulation Results for IEEE-57 Bus system using Case-3 and Case-4.

Bus System IEEE-57

Objective function ABC SHADE-SF [4] GWO [7] AGWO
Case-3 Case-4 Case-3 Case-4 Case-3 Case-4 Case-3 Case-4

Cost (MW/h) 21262 21450 21260 22693 21247 21448 21215 21448
Carbon emission (ton/h) 33 16 39 23 36 10 31 9.42
Computational time (Sec) 870 448 330 298 247 255 220 243

TABLE VI: Simulation results for IEEE-118 Bus System using Case-5 and Case-6.

Bus System IEEE-118

Objective function ABC SHADE-SF [4] GWO [7] AGWO
Case-5 Case-6 Case-5 Case-6 Case-5 Case-6 Case-5 Case-6

Cost (MW/h) 69934 93416 113523 124438 77606 101114 70014 980851
Carbon emission (ton/h) 128 119 133 99 144 97 113 95
Computational time (Sec) 6319 7700 1223 1772 2200 3679 2377 3517

B. Case 4: Optimizing Fuel Cost and Carbon Emission
This Case study is conducted to optimize the OPF solution

for quadratic fuel cost and carbon emission control for the
objective function given in Eq. 24. It is evident from Table V
that AGWO obtains the lowest values for this Case study with
fuel cost and carbon emission values of 21448 $/h and 9.42
ton/h, respectively. The variation of total fuel cost between
AGWO and other algorithms are shown in Fig. 1d.

VIII. CASE STUDIES FOR IEEE-118 BUS SYSTEM

A. Case 5: Optimization of Total Generation Cost
In this Case study, the generation system total fuel cost

minimization is taken as an objective function given by Eq.
23. The cost computed by AGWO for this Case is 70014 $/h,
which is better than SHADE-SF and the original GWO [7],
which are respectively 77606 $/h and 129509 $/h. The ABC
algorithm achieves the minimum cost for this case study with
an obtained value of 69934 $/h. Table VI provides obtained
values comparison for generation costs, carbon emissions
and computational time for all algorithms. The convergence
graph in Fig. 1e reveals that AGWO has better convergence
properties than GWO and other recent approaches reported in
the literature.

B. Case 6: Optimizing Fuel Cost and Carbon Emission
Both quadratic fuel cost and emission gases minimization is

the aim of this Case study. The objective function calculation
is based on Eq. 24. With carbon tax imposition, the value
of emission is significantly reduced from 113 ton/h in Case
5 to 95 ton/h. The ABC algorithm obtained lower costs
for Case-5 and Case-6 but the computational cost has been
increased. The AGWO algorithm needs the least computation
time, recommending that it is a highly capable algorithm
for industrial applications. Fig. 1f compares the convergence
characteristics of all algorithms for 500 trial runs.

IX. CONCLUSION

In this paper, a solution strategy for OPF study is proposed
that considers traditional TPGs and the stochastic nature of
renewable energy sources (RES) in the system. Different PDFs
were used to realistically model wind, solar and hydropower

generation uncertainty, and their integration procedures were
discussed. To prove the effectiveness of proposed algorithm,
several case studies were investigated, and detailed results
were numerically precisely given. Thus, novel contributions
comprise the proposed objective functions that consider RES;
the use of an AGWO method to tackle the non-convex OPF
problem, and its application in small, medium and higher bus
systems with assessment via simulation for six case studies.

From the article’s findings, it was evident that AGWO is
very useful and reliable with a remarkable fast convergence
rate to search a global solution for considered objective func-
tions. It beats other approaches in terms of convergence time
and generation cost and minimization, whilst simultaneously
addressing the essential system constraints.
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