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The Artificial Neural Network (ANN) modelling is presented for the steam gasification of palm kernel
shell using CaO adsorbent and coal bottom ash as a catalyst. The effect of the parameters such as;
temperature, CaO/biomass ratio and Coal bottom ash wt.% at fixed steam/biomass ratio and steam/
biomass ratio at the fixed temperature on product gas composition of Hp, CO, CO,, and CH4 are modelled
using ANN. The effect of parameters is used as an input, while the gas compositions, syngas yield, LHVgs
and HHVg,s of gas as the output of the network. Back propagation algorithm has been used for the
training with 7 neurons in the hidden layer. Hence, the selected ANN architecture was (2-7-1). The gas
composition predicted by the ANN model are compared with experimental results obtained from pilot
scale gasification system that has been reported in our previous study. The ANN predicted results show
high agreement with the published experimental values with the coefficient of determination R? = 0.998
for almost all the cases, i.e., the effect of parameters. RMSE, MAD, and AARE have been reported to be
very insignificant for the predicted and experimental values.

Temperature
Coal bottom ash

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The transition of the world into a modern world has been taking
place due to the introduction of fossil fuel that supplies the required
demand of energy for modernization. The continuing moderniza-
tion of the world is required the huge demand for energy and the
sole dependence on fossil fuel is unable to meet this requirement
due to the finite resources [1]. In addition, the use of fossil fuel has
become the cause of many environmental concerns like green-
house gas emission, global warming, disturbance of weather cycles
due to the melting of ice at north poles, smog in cities, and skin
deformation diseases [2]. From last two decades, extensive research
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has been made to find new and alternative sources of energy
through renewable sources to accomplish the growing demand for
energy and sustainable development of world [3,4]. In this regard,
biomass enterprises itself to be the best energy source among all
other renewable energy sources as advocated by the advantages
such as abundant availability around 200—700 EJ/annum, sustain-
ability, and green due to mitigation of CO, emission [5,6]. Biomass
can be converted into liquid, gaseous and solid fuels through bio-
logical and thermochemical conversion [7,8]. Biomass gasification
is fund to be the best source among thermochemical conversion for
the production of gaseous fuel [9].

In biomass gasification process, the carbon-based biomass is
thermally treated at the higher temperature in the presence of
gasification agents (steam, oxygen, air) in a reactor known as the
gasifier [10]. The gasification process produced a mixture of gases
(Ha, CO, COy, CH4, CHy) known as product gas [11]. Hydrogen and
syngas can be used directly as a fuel but also can be converted into
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much conventional fuel and chemical such as methanol, ethanol,
diesel, ammonia, and urea [12]. Cleaner production of hydrogen
and syngas from biomass not only full fill the growing energy de-
mand but also economically viable to utilized same current infra-
structure without any major modification to replace the fossil fuel
[6]. The performance of gasification and composition of product gas
depend on the gasifier type, gasification agent, particle size, types
of catalyst. The fluidized bed gasifier is found to be the best gasifier
due to better heat and mass transfer in the temperature range of
600—900°C. Steam is the preferable gasification agent for
hydrogen-rich syngas production with no problem of nitrogen as in
case of air, and economical as compared to oxygen [3].

The use of catalyst has many advantages in gasification such as
to attain the augment quantity of desired product. It may also
enhance the economic process by reducing gasification tempera-
ture and conversion of tar into gases [13]. Basically, three types of
catalyst were used in the gasification process (e.g. transition metal
Ni, dolomite bases catalyst, and alkaline earth metal) [14]. In order
to make process economical, a catalyst is not only cheap but also
has the ability to enhance the gasification process with minor
problem of regeneration and sintering. Coal bottom ash is the waste
residue of coal thermal power plant. It has normally used in con-
struction industry, and cement industry [15]. It has many toxic el-
ements so its handling and disposal not only costly as well as
contaminated the soil, underground water and air [ 16]. The current
research shows that coal bottom ash contained alkaline metals such
as Al Fe, K, and Ca in a reasonable quantity [17]. The catalytic effect
of alkaline metal and CaO are well established and documented
[18]. In our previous study potential of coal bottom ash used as a
catalyst in gasification was studied [14]. However, Coal bottom ash
as a catalyst in gasification is not be tested. Although, the use of
biomass ashes is in gasification for some catalytic effect is reported.
Husserman et al., 1994 [19] found the reactivity had increased a
factor of 4 by using the wood ash in wood gasification. Meanwhile,
Umike et al. [20] have reported the biomass ash can maintain the
catalytic activity during gasification process. In the case of coal
bottom ash, Xiong et al. [17] has reported the use of coal bottom ash
as a bed material in coal gasification and found good for tar
reduction. A conclusion can be made that, coal bottom ash has not
been investigated as the catalyst in literature except our previous
study.

Palm oil is the major crop of Malaysia and Indonesia which
accommodate more than 86% of world palm oil production [7]. This
large-scale production produced a huge amount of palm oil residue
about 54.1 Mt/yr. The utilization of palm oil waste had increased a
lot in the last for energy production. Yang et al. [21] used the palm
oil waste such as EFB, PKS, and POF in pyrolysis process. In case of
gasification, the air gasification is more focused on utilizing the EFB
in air gasification using fluidized bed reported by Ref. [22]. CaO is
used as an absorbent for CO5 in the gasification process. Khan et al.
used the PKS for steam gasification using CaO and Ni catalyst, and
attained high Hj yield of 82 vol% [23].

The advances in soft computing and computer science elaborate
the interest in the development of prediction models for time-
consuming and costly experiments. For the design of a new prod-
uct using a series of experiment, researchers are facing difficulties
to obtain the real data due to high cost and time-consuming ex-
periments for different operating conditions [24]. To overcome
these concerns, Artificial Neural Network (ANN) is a reliable tool for
the prediction of experimental data. It has the capability to employ
its computational power from parallel structure along with the
ability of learning and generalization [25]. It is widely used for the
solutions of non-linear problems. The prediction performance and
generalization depend on the training of network. The generaliza-
tion relates to the performance of the ANN for the inputs which

were not used during the training of the network. In recent years,
among the various methods of machine learning, ANN has been
extensively used to predict the nonlinear system data due to its
accuracy, precision, time and low cost. It is a nonlinear modelling
tool which can be used in the application of different types of en-
gineering problems with limited experimental data. The motivation
behind the ANN is a human brain [26]. It utilizes parallel processing
networks which are used to control the complex relationships
between the input and output variables. According to our best
knowledge, very few studies have been reported the use of ANN
approach for gasification of biomass. The first study was developed
by Robret et al. for biomass gasification system by using ANN on the
basis of reported data for the gasification of the fixed bed [27]. Later,
Dipal et al. [26] developed the ANN-based model for the biomass
gasification using fixed bed down-draft gasifier and predicted the
composition of gases H,. CO, CO,, and CH4 by using input param-
eters such as C, H, O, ash, moisture content, and reduction zone
temperature. Both studies are based on the fixed bed gasification.
There is no study based on steam biomass gasification using the
fluidized bed.

From the above discussion, a conclusion can be drawn that palm
oil waste gasification has not been reported using ANN approach.
Moreover, coal bottom ash has not been used as a catalyst in the
steam gasification process. The objective of this study is to develop
an ANN model for the prediction of gas composition and validate
with published [28] experimental data. In addition, the effect of
four parameters which are temperature, steam/biomass ratio, CaO/
biomass ratio and wt% of coal bottom was studied. The selected
ranges for each of the parameters are: 650—750 °C temperature,
0.5—2 ratio of CaO/biomass, 0.02—0.10 ash wt% of coal bottom and
0.5—1.5 ratio of steam/biomass.

2. Methodology
2.1. Material

The biomass (palm oil waste) is employed for the gasification
was collected from Kilang Sawit Felcra Nasarudin Sdn. Bhd.
Malaysia. The biomass was dried using sun and oven drying. The
biomass has grinned in the particle range of 0.5—1 mm. The palm
oil waste (PKS) is selected for syngas production through gasifica-
tion for its higher heating value of 18.46 MJ/kg [29]. The elemental
and component compositions were determined experimentally as
shown in Table 1. Coal bottom ash used as catalyst obtained from
TNB Janamanjung Sdn Bhd power plant Selangor Malaysia. Dolo-
mite is used for CaO source to adsorbed the CO; is obtained from
Kinetic Chemical Sdn. Bhd. The coal bottom ash consist of Fe, Ca,
Mg, and Al are shown its catalytic potential in gasification the
chemical composition of coal bottom ash is given in Table 2 [28].

Table 1

Proximate and ultimate analysis of PKS [3,28].
Moisture 9.70
Proximate analysis (dry mass fraction basis)
Volatile matter (%) 80.81
Fixed carbon (%) 14.25
Ash content (%) 494

Ultimate Analysis (dry mass fraction basis)

C(%) 48.78
H (%) 5.70
N (%) 1.01
S (%) 0.21
O (%) (by difference) 443
HHV(M]/kg) 18.82
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Table 2
Chemical composition of CBA using XRF.

Chemical composition by XRF

Sio 441
Fe,03 243
Cao 13

ALO; 9.21
MgO 1.88
K203 1.25

CaO and CBA both were grounded in the size of 0.250 mm.

2.2. Procedure

The experimental setup used for the steam gasification of palm
oil waste is shown in Fig. 1. The detail of setup has been given in our
previous publication [28], and the current ANN model is used to
validate the experimental results obtained at this setup and pub-
lished in Ref. [28]. The gasification system comprises of fluidized
and fixed bed reactor, biomass feeder, and boiler for steam gener-
ation, cyclone separators for cleaning, water supply, and treatment
system. Scrubber and online gas analyser. Palm oil waste along with
coal bottom ash is supplied into gasifier through feeding system.
The boiler is used for steam generation, and it is further super-
heated at the temperature of 350 °C and supplied to the gasifica-
tion system. Silica sand and dolomite is used as a bed material
fluidized bed and fixed bed reactor for fluidisation and adsorption.
The produced gases pass through the cyclone separator for the
removal of tiny solid particles. The temperature is reduced up to
40 °C using water scrubbing system. The cool gases are measured
through the online gas analysing system.
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2.3. ANN network approach

ANN is a computation technique developed by imitating the
learning skills of the human brain and biological cells. It is a sig-
nificant and reliable tool that has gained attraction in the field of
predictive modelling as it has the capacity to learn nonlinear and
complex processes. The network comprises of simple elements
which are functioning in parallel. These are stimulated by the
biological nervous system. These networks are organized in form of
connecting layers which are connected to each other by connection
called nodes. The network comprises of three types of layers; the
input layer, hidden layer, and the output layer. The selection of the
number of hidden layers and the number of neurons in each layer is
very crucial part in the development of neural network as it im-
proves the capacity and ability of network. The networks are
trained and adjusted in order to lead the input to the particular
target output. Fig. 2 depicts the situation of adjusting the weights
until there is an optimal deviation between the output and the
targets.

Several neural networks are available for the modelling of
experimental data such as Feed-Forward Neural Network (FFNN)
[24,30], Radial Basis Function Neural Network (RBFNN), Kohonen
Self-Organizing Neural Network (KSONN), General Regression
Neural Networks (GRNN), Probabilistic Neural Networks (PNN), and
Recurrent Network (RN) [31]. Among all, the FFNNs are widely used
in the chemical engineering application. FFNN comprises of single
layers and multi-layers' perceptron. In this type of networks, the
information moves in one direction only. The signal generated from
the input layer are transmitted to the hidden layer in which the
activation function approximates the biases and weights of the
network by applying learning algorithm. Finally, the output is
known as predicted result. Back Propagation (BP) methods are
widely used for the modelling of the neural network. It is a
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Fig. 1. Experimental gasification set up for the steam gasification of palm oil waste.
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Fig. 2. Neural network operation.

supervised learning technique used for the approximation of
nonlinear mapping. It utilized the gradient search techniques to
reduce the error by changing the weights via activation function
and improves the performance of the network. From different
learning algorithms, Levenberg-Marquardt (LM) has been used for
the modelling of syngas derived products for its better performance
[24,31—33]. LM is known as the fastest algorithm for the training of
neural network since it has a feature of memory reduction in case of
a large dataset. The network error is calculated by comparing the
output and the target. At the start, the calculated error shows the
large deviation between the actual and predicted output. The
network minimizes the error by adjusting weights and biases till
obtaining the minimum error. It is noted that the over fitting is a
crucial problem in the training of neural networks. It associated
with the situation when system predicts the accurate result but
fails to perform better in case of a new dataset. The ANN perfor-
mance is measured by mean square error (MSE) [34] given below;

1 2
MSE = N (Yann — YExp)
i=1

where Yann is the predicted output from ANN and Ygxp is the
experimental data and N is the number of samples.

The input parameter used for the training of neural networks are
steam-biomass ratio, temperature, Coal bottom ash %, and CaO/
Biomass, for the prediction of output parameter which are Hy, CO,,
CO and CH4 (vol%) in the product gas, Syngas yield, LHVg,s and
HHVg,s. All the data (i.e., inputs and outputs) are normalized be-
tween 0 and 1 to enhance the performance of the network. Due to
the fact that the higher values of the inputs may lead to minimizing
the effect of smaller values in case of a network is being trained
without normalization. Moreover, the rescaling of an input/output
vector make the training faster and it also gives the equal values to
all inputs. This process can guarantee the convergence process
stable for weights and biases.

In this study, the dataset was divided into three different sets,
out of which 80% for the training, 20% for the testing, and 20% were
used for the validation of the network. The optimal structure of the

Table 3
ANN model parameters.

neural network was selected by means of trial and error method.
For the current study, the number of the neuron is the hidden layer
was found by the iterating the network for minimum mean square
value (MSE). The selection of the number of the neuron is also a
vital step in the development of the neural network. Less number of
neurons may not help the network in obtaining anticipated error
while the high number of neurons may cause over-fitting of the
network. Training and validation-test data were randomly selected
from the available sample. The details of ANN model parameters
are presented in Table 3.

3. Results and discussion

Four neural networks were developed for the prediction of gas
composition in the product gas. The developed multi-input and
single-output neural network for the prediction of gas composition
in the product is comprises two inputs layers namely (steam/
biomass ratio and temperature), (Steam/biomass ratio and Coal
bottom ash %), (Steam/biomass ratio CaO/Biomass) and (Tempera-
ture and Steam/Biomass ratio) and single output (H,, CO, CO,, and
CHy), with one hidden layer. This scheme was found to be effective
for the development of prediction model for gas composition as
shown in Fig. 3. The layers are interconnected by processing
element called neurons. Before training of the network, the hidden
neurons were selected and tested for the ANN model. The number
of neurons in the hidden layer was selected on the basis of mini-
mum Mean Square Error (MSE). The error minimization within the
network requires appropriate selection of the number of neurons in
the hidden layer.

To obtain the minimum MSE for the training network, the
number of hidden neurons was tested for the corresponding MSE
starting for the smallest value. This process will give the optimized
neurons at the lower value of MSE. In this study, the ANN model
was trained and tested from 1 to 20 number of neurons. The trained

Input Layer Hidden Layer Output Layer

Steam/biomass ratio and Temperature
Output Layer
_ (H,,C0, CO,, CH,)
Syngas Yield
LHV
HHV

Steam/biomass ratio and Coal bottom ash%
Steam/biomass ratio and CaO/Biomass

Temperature and Steam/Biomass ratio

Tterative Selection of Neurons

Fig. 3. ANN Model Structure for the prediction of syngas composition.

S.No. Particulars Specifications

1 Type of Network Feed Forward Neural Network

2 Training Algorithm Levenberg-Marquardt backpropagation
3 Performance Function Mean Square Error (MSE)

4 Data Division Random

5 Number of Input Layer 2

6 Number of Hidden Layer 1

7 Number of Output Layer 1

8 Number of Hidden Neurons Iterative

9 Learning Cycle (Number of Epochs) 1000
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network with 7 hidden neurons was found to have minimum MSE
value. It can be seen that the experimental and simulated values n (Y _y )2
have very minor difference which can be determined by the errors. ~ RMSE = ATANN — TExp)
The values of these errors show that the predicted values are in i=1 n
good agreement with experimental values. The minimum is the
error, the maximum is R? value for the experimental and simulated 1
case studies. Besides, the use of coefficient of determination, the MAD = = Z}YANN _ YExp|
performance of developed ANNs for H,, CO, CO,, and CH4 was ni3
statistically measured by different types of errors i.e. Root Means
Square Error (RMSE), Mean Absolute Deviation (MAD) and Absolute Ny oy
Average Relative Error (AARE) which were calculated on the basis of P
experimental and simulated values as mentioned in Table 4. AARE=E1___ 100
n
Table 4
Artificial neural network input and output parameters for gas composition.
Input Neurons Output Neuron Errors
Effect of Temperature at fixed Steam/Biomass Ratio
Steam/biomass ratio Temperature Gas component RMSE MAD AARE %
15 650 H, 0.427470364 0.29896357 0.38580605
660 Co 0.153582174 0.110281776 1691586518
671 COo, 0.132041546 0.092825682 1.346120185
681 CH,4 0.153047992 0.109447442 1.056688367
692
702
713
723
733
743
750
Effect of Coal Bottom Ash% at fixed Steam/Biomass Ratio
Steam/biomass ratio Coal bottom ash % Gas Component RMSE MAD AARE %
15 0.02 H, 0.328020462 0.180290148 0.366935135
0.028 Co 0.101699527 0.080034897 1.097372153
0.036 CO, 0.10102947 0.075693623 1.113068401
0.044 CH,4 0.129789927 0.098766874 1.025030944
0.052
0.06
0.07
0.076
0.084
0.092
0.1
Effect of CaO/Biomass at fixed Steam/Biomass Ratio
Steam/biomass ratio CaO/Biomass ratio Gas Component RMSE MAD AARE %
1.5 0.5 H, 0.540243239 0.283842135 0.918124565
0.65 Co 0.132364159 0.10852901 1.585205279
0.8 CO, 0.09075913 0.073443094 1.168669858
0.95 CHy4 0.135505285 0.100531738 0.94395947
1.1
1.25
1.42
1.55
1.7
1.85
2
Effect of Steam/Biomass Ratio at fixed Temperature
Temperature Steam/Biomass ratio Gas Component RMSE MAD AARE %
692 0.5 H, 0.533662772 0.30703862 1.146252703
0.6 co 0.164190386 0.108456366 1.033690945
0.7 CO, 0.221884974 0.14696826 1.421572416
0.8 CHy4 0.140558585 0.101300707 0.761568496
09
1
1.1
1.2
13
1.4




248

It can be observed that all the errors show very small values for
the predicted models. The higher the value of R?, with smaller error
values. It signifies the good fitting between experimental and
predicted values. Hence, it shows that the developed ANN model is
suitable to represent syngas product composition.

3.1. Effect of temperature

The effect of parameter i.e., temperature, CaO/biomass ratio,
coal bottom ash wt.% at fixed steam/biomass ratio and seam/
biomass ratio at fixed temperature predicted by the model is also
compared with the experimental data obtained at pilot scale gasi-
fication plant reported in Ref. [28]. The impact of varying temper-
ature on gas composition can be seen in Fig. 4. Hy composition is
varied from 66 vol% to 79 vol% by varying the temperature from 650
to 750 °C. The maximum Hp production is observed at 692 °C. The
CO decreased from 13.92 vol% to 5.93 by increasing the temperature
from 650 to 692 °C. The increase in Hy production is due to the
activeness of water gas shift reaction and steam reforming reaction
as reported by many researchers [29,35]. The CO, production is
observed very low and varied from 8.39 vol% to 5.93 vol% in the
temperature range of 650—750 °C. The lower production of CO; is
due to the presence of CaO that captured the CO, through
carbonation reaction [36]. Methane composition is predicted by the
model is maximum 14.93 vol% at 650 °C and minimum at 692 °C
and is also good agreement with the experimental results as shown
by Fig. 4. The dropped in methane yield is due to the enhancement
of tar cracking of steam methane reforming reaction, that enhanced
at the higher temperature with higher steam/biomass ratio of 1.5
[37]. The ANN modelling results for the effect of temperature has
been mentioned in Table 4. It can be seen that the RMSE, MAD and
AARE errors have very small values. It can be observed that there is
a good agreement between ANN model prediction and experi-
mental values as depicted in Fig. 4. It can be observed that ANN
model predict all the experimental value for product compositions
for Hy, CO, CO, and CHy significantly. This model gives better results
at 7 number of neurons.

3.2. Effect of steam/biomass ratio
Fig. 5 depicted the comparison of gas composition predicted by

the ANN model with the experimental result by increasing the
steam/biomass ratio from 0.5 to 1.5. The predicted gas composition
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Fig. 5. Comparison of experimental results with ANN predicted for fluidized bed
gasifier
at fixed steam/biomass ratio and varying coal bottom ash%.

have shown good agreement with experiment result as depicted by
higher R2. The H; content is increased from 35.75 vol% to 79.77 vol%
by increasing the steam/biomass ratio from 0.5 to 1.5. On the other
hand, the CO content reduced from 25.55vol5 to 5.93 vol%. The
same trend is observed for CO, and CH4 with the addition of steam.
The enrichment of H, content in product gas is the activation of
endothermic reaction such as water gas shift reaction, tar cracking
and steam methane reforming. The acceleration of this reaction
with the introduction of steam in palm oil waste gasification is also
observed by many other researchers [35,38]. The lower composi-
tion of methane and CO; is due to the functioning of steam methane
reforming reaction and carbonation reaction respectively that is
active due to the presence of steam and CaO [4]. It can be seen in
Table 4 that AARE error is not more than 2% for all the product
gases. Moreover, the RMSE and MAD error are also small in range.
Hence the smaller values of errors show the higher value for the
coefficient of determination which is R? value close to 0.999.

3.3. Effect of CaO/biomass ratio

The use of CaO in biomass steam gasification has numerous
advantages. It is not only captured the CO, through adsorption but
also has the catalytic effect and enhance the gasification process
[39]. Fig. 6 depicted the effect of CaO/biomass ratio at steam/
biomass ratio of 1.5 on product gas composition predicted by the
model and compared with experiment result. Experimental and
ANN simulation model values for Hy, CO, CO,, and CH4 were
compared as shown in Fig. 6. It can be observed that model has
shown good performance as having the value of R? is 0.998 with
AARE less than 1% for all gas compositions. The concentration of Hy
in produced gas is highly influenced with CaO/biomass ratio as it
increased from 66.66 vol % to 79.77 vol% with the increased from
0.5 to 1.42 and then little dropped at higher CaO/biomass ratio. The
CO; production is very low in product gas as CaO is used for the
adsorption of CO; in produced during gasification process. The
enrichment of H, content in product gas is due to catalytic effect of
Cao as it enhance the tar cracking, steam methane reforming re-
action, and water gas shift reaction as it a proven catalyst in
biomass gasification [40]. Secondly, at higher temperature, CaO
produced due to calcination of CaCOs and captured CO, through
carbonation reaction [41]. The reduction of CO, content enhances
the H; content in product array. The lower production of methane
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Fig. 6. Comparison of experimental results with ANN predicted for fluidized bed
gasifier
at fixed steam/biomass ratio and varying CaO/Biomass.

with the addition of CaO/biomass ratio is due to steam methane
reforming reaction. This catalytic and CO, adsorption effect in
biomass (palm oil waste) steam gasification is noticed by many
researchers [4,42].

3.4. Effect of coal bottom ash wt.%

Fig. 7 represented the effect of varying coal bottom ash wt. % on
product gas composition Hy, CO, CO,, and CHy4 predicted by the
model. The gas compositions have the close agreement with
experimental value as advocated by the errors presented in Table 4.
The AARE for the all the gas compositions is relatively very small as
compared to other cases. The RMSE and MAD for this case show
smaller values of errors. The coefficient of determination R* was
found to be 0.999. The neural network prediction model gives good
results for the effect of coal bottom ash %. Catalyst has a capital role
in gasification process to enhance the tar cracking, product gas
composition and specific yield of product. It can be observed that
H, content enhance remarkably from 65 to 79.99 vol% by increasing
the cola bottom ash wt.%. The other constituents of product gas CO,
CO,, and CHy4 are decreased with the increase of coal bottom ash
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Fig. 7. Comparison of experimental results with ANN predicted for fluidized bed
gasifier at fixed temperature and varying steam/biomass ratio.

from 0.02 to 0.07. This show the catalytic effect of coal bottom ash
in biomass gasification process. Catalyst effect the gasification
reactivity and enhance tar cracking and convert the solid into
gaseous products The catalytic effect of coal bottom ash is due to
presence of Al, Ca, Mg, Fe content present in coal bottom ash as
described in our previous publication [28]. The effect of these metal
content in gasification process is well documented [43]. The alka-
line metal enhances the biomass conversion and reactivity in
biomass gasification [7]. The Fe based catalyst used in palm oil
waste gasification and enhancement in H; content is noticed [44].

The yield of syngas is very important to measure the perfor-
mance of gasification system. It was observed that the syngas yield
is high as 284, 287 and 284.20 g/kg of biomass at fixed steam/
biomass ratio of 1.5 by varying the temperature, CaO/biomass ratio
and coal bottom wt %. The heating value of product gas are evalu-
ated to measure the performance of gasification system. It was
observed that LHV and HHV of gases obtained from 12.48 to 12.89
and 14.32—14.69 MJ/Nm?> by varying the temperature from 650 to
750 °C at fixed steam/biomass ratio of 1.5. Similarly, the LHV varies
from 12.50 to 13.02 and 12. 47 to 13.58 MJ/Nm> by varying coal
bottom ash wt% and CaO/biomass ratio. The HHV of gases 14.32 to
14.64, 14.23 to 14.84 and 14.42—15.42 MJ/Nm> by varying the
temperature, cola bottom ash wt% and CaO/biomass ratio at fixed
steam/biomass ratio 1.5. The effect of various parameters on syngas
yield, LHVg,s and HHVg,s is also modelled using neural network. It
was observed that ANN model predicts the significant results for
the prediction of syngas yield, LHV and HHV (gas) with effect of
temperature, CaO/biomass ratio and Coal bottom ash wt.% at fixed
steam/biomass ratio and steam/biomass ratio at the fixed temper-
ature. (See Figure A-1 — Figure A-3 in Appendix). Furthermore, the
developed ANN model gives accurate results for all the practical
gasification process with R? > 0.98 with smaller value of RMSE, MSE
and AARE for the syngas yield, LHV and HHV of gas. (See Table A-
1—Table A-3 in Appendix). Hence, ANN model is able to map the
accurate experimental value which shows the significance of the
model for the experimental data prediction of biomass gasification.

4. Conclusion

The ANN modelling for the experimental results on tempera-
ture, CaO/biomass ratio, coal bottom ash wt.% at fixed steam/
biomass ratio and steam/biomass ratio at fixed temperature has
been investigated. Feed-forward back propagation neural network
has been used for the development of model. Levenberg-Marquardt
(LM) has been used for the modelling of syngas derived products
for its better performance. Four neural networks were developed
for the prediction of gas composition in the product gas. The
developed multi-input and single-output neural network for the
prediction of gas composition in the product comprises of two
input layers (steam/biomass ratio and temperature), (Steam/
biomass ratio and Coal bottom ash %), (Steam/biomass ratio, CaO/
Biomass ratio) and (Temperature and Steam/Biomass ratio) and
single output (Hp, CO, CO,, and CH4), with one hidden layer. The
results obtained by the ANNs show good agreement with published
experimental results. The predicted values show small errors for
RMSE, MAD, and AARE along with higher values for the coefficient
of determination R? (R?> = 0.99) in almost all the cases. This study
shows a good approach and has a valuable potential for the pre-
dictive modelling of biomass gasification. These models can further
be used for the optimization and dynamic control of biomass
gasification process.
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Table A-1
Artificial neural network input and output parameters For Syngas Yield.
Input Neurons Output Neuron Errors

Effect of Temperature at fixed Steam/Biomass Ratio

Steam/biomass ratio Temperature Syngas Yield g/kg biomass RMSE MAD AARE %
1.5 650 230.05 1.516401161 0.953072582 0.78655457
660 24431
671 257.54
681 267.28
692 275.48
702 280.65
713 283.81
723 284.39
733 282.81
743 279.04
750 275.10
Effect of Coal Bottom Ash¥% at fixed Steam/Biomass Ratio
Steam/biomass ratio Coal bottom ash % Syngas Yield g/kg biomass RMSE MAD AARE %
1.5 0.02 261.54 1.769888058 0.952595973 0.634961842
0.028 273.95
0.036 282.48
0.044 287.13
0.052 287.90
0.06 284.80
0.07 275.47
0.076 266.96
0.084 252.22
0.092 233.61
0.1 211.12
Effect of CaO/Biomass at fixed Steam/Biomass Ratio
Steam/biomass ratio CaO/Biomass ratio Syngas Yield g/kg biomass RMSE MAD AARE %
1.5 0.5 165.33 1.646062425 0.931847397 1.019143918
0.65 206.59
0.8 238.76
0.95 261.87
1.1 275.89
1.25 280.84
1.42 275.48
1.55 263.51
1.7 241.22
1.85 209.86
2 169.42
Effect of Steam/Biomass Ratio at fixed Temperature
Temperature Steam/Biomass ratio Syngas Yield g/kg biomass RMSE MAD AARE %
692 0.5 201.18 0.730786044 0.374038128 0.391888908
0.6 205.82
0.7 211.07
0.8 216.95
0.9 223.44
1 230.56
1.1 238.30
1.2 246.66
13 255.65
14 265.25
1.5 275.48
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Table A-2
Artificial neural network input and output parameters for LHV (gas).
Input Neurons Output Neuron Errors
Effect of Temperature at fixed Steam/Biomass Ratio
Steam/biomass ratio Temperature LHVg,s (M]/ Nm?) RMSE MAD AARE %
1.5 650 12.89 0.029868605 0.024924329 0.196436555
660 12.75
671 12.63
681 12.56
692 12.50
702 12.48
713 12.49
723 12.53
733 12.61
743 12.71
750 12.79
Effect of Coal Bottom Ash% at fixed Steam/Biomass Ratio
Steam/biomass ratio Coal bottom ash % LHVg,s (MJ/Nm?) RMSE MAD AARE %
1.5 0.02 13.02 0.031810781 0.016641636 0.302231723
0.028 12.90
0.036 12.81
0.044 12.72
0.052 12.64
0.06 12.57
0.07 12.50
0.076 12.46
0.084 12.42
0.092 12.39
0.1 12.37
Effect of CaO/Biomass at fixed Steam/Biomass Ratio
Steam/biomass ratio CaO/Biomass ratio LHV,,s (MJ/Nm?) RMSE MAD AARE %
1.5 0.5 13.58 0.097526921 0.051377295 0.587568741
0.65 13.21
0.8 12.91
0.95 12.68
1.1 12.54
1.25 12.47
1.42 12.49
1.55 12.58
1.7 12.75
1.85 13.01
2 13.33
Effect of Steam/Biomass Ratio at fixed Temperature
Temperature Steam/Biomass ratio LHVgas (M]/ Nm?) RMSE MAD AARE %
692 0.5 13.64 0.021827309 0.01143416 0.365441985
0.6 13.63
0.7 13.61
0.8 13.55
0.9 13.48
1 13.37
1.1 13.25
1.2 13.10
13 12.92
14 12.72
1.5 125
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Table A-3
Artificial neural network input and output parameters for HHV (gas).
Input Neurons Output Neuron Errors
Effect of Temperature at fixed Steam/Biomass Ratio
Steam/biomass ratio Temperature HHVg,s (MJ/Nm?) RMSE MAD AARE %
1.5 650 14.32 0.011044398 0.008101911 0.055999263
660 14.34
671 14.37
681 14.40
692 14.44
702 1447
713 14.50
723 14.54
733 14.57
743 14.61
750 14.64
Effect of Coal Bottom Ash¥% at fixed Steam/Biomass Ratio
Steam/biomass ratio Coal bottom ash % HHVg,s (MJ/Nm?) RMSE MAD AARE %
1.5 0.02 14.84 0.012492279 0.006665292 0.202202391
0.028 14.77
0.036 14.70
0.044 14.63
0.052 14.57
0.06 14.51
0.07 14.44
0.076 14.39
0.084 14.34
0.092 14.28
0.1 14.23
Effect of CaO/Biomass at fixed Steam/Biomass Ratio
Steam/biomass ratio CaO/Biomass ratio HHV,,s (MJ/Nm®) RMSE MAD AARE %
1.5 0.5 15.40 0.035203817 0.019495822 0.342529727
0.65 15.07
0.8 14.80
0.95 14.61
1.1 14.48
1.25 14.42
1.42 14.44
1.55 14.50
1.7 14.65
1.85 14.86
2 15.14
Effect of Steam/Biomass Ratio at fixed Temperature
Temperature Steam/Biomass ratio HHVg,s (MJ/Nm?) RMSE MAD AARE %
692 0.5 15.07 0.040731088 0.019651841 0.276154492
0.6 15.19
0.7 15.28
0.8 15.32
0.9 15.32
1 15.28
1.1 15.19
1.2 15.07
13 14.90
14 14.69
1.5 14.44
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