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Abstract 
Electricity is one of the energy types that have attracted a lotof interest due to its versatility.Rigorous analysis of the determinants of 

electricity demand as well as its accurate forecasting are of vital importance in the design of an effective energy policy to deal with 

current and future electricity needs.Several load forecasting models have been used inelectric power systems for achieving accuracy. 

Most studies have focused on the relationship between electricity demand and economicparameters such as gross domestic product 

(GDP), Gross National Product (GNP), national income, and the rate of employment as well as unemployment. Various studies have 

investigated the influence of ambient airtemperature, most times represented by heating and coolingdegree-days, on electrical energy 

consumption. Many studies have been conducted on short/long term electricity demand/load forecasting, but application of neuro fuzzy 

logic for forecasting electricity demand based on combined economic and climate conditions is still unexplored. In this paper, an ANFIS 

network (adaptive neuro fuzzy inference system) was designed to map six parameters as input data for State of Johor, Malaysia 

including four demographic& economic parameters (i.e. Employment, GDP, Industry Efficiency and Population), and two 

meteorological parameters related to annual weather temperature (i.e. minimum and maximum average annual temperature).to 

electricity demand as output variable. 
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1. Introduction 

The current electricity demand/load forecasting 

methods are mostly based on: data mining, multivariate 

analysis and time series analysis [1-10]. Multivariate 

analysis establishes the relationship between dependent 

and independent variables and fashions a causal model 

for dependent variable forecasting in term of independent 

variable. The forecasting precision of this model depends 

on the selection of independent variables. If the variation 

of the dependent variables cannot effectively explain, 

then it will produce a forecast model with high variance. 

On the other hand, time series models require only the 

historical data of the variable of interest to forecast its 

future progression. For example, the autoregressive 

integrated moving average (ARIMA) models have been 

widely used in energy demand forecasting. However, a 

large number of observations have been usually required 

to produce accurate forecasting results. Data mining 

techniques, such as artificial neural networks and support 

vector regression, are widely used as forecasting 

approaches and have extremely good forecasting 

performance. However, the forecasting results depend on 

the number of training data and their representativeness, 

and these limitations have not yet been overcome. 

In all the above methods, the key element that affects 

forecasting performance is the sample size, which limits 

their applicability to certain forecasting situations. 

Forecasting the energy demand in rapidly developing 

countries is an example of this. Although a considerable 

amount of historical data is available, it usually differs 

significantly from the actual growth in electricity 

consumption. Since electricity consumption is generally 

represented as following an exponential trend, the usual 

methods of forecasting with limited data, such as basic 

time-series approaches like the moving average, 

exponential smoothing, and linear regression, are not 

suitable. Therefore, for a non-deterministic condition, it 

is helpful to establish new models using limited samples 

to conduct electricity consumption forecasting. The 

currently applied theories and methods for non-

deterministic data or uncertainties can be divided into 

three categories: probability theory, fuzzy mathematics, 

and grey system theory [11-15]. Where probability 

theory focuses on the stochastic phenomena [16], fuzzy 

mathematics studies the situation of cognitive 
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uncertainties [17], and grey system theory is developed 

to deal with the problems of small samples and 

insufficient information [18]. Probability theory usually 

requires quite a lot of observations to produce accurate 

and stable results, and the performance of fuzzy 

mathematics is heavily related to human experience. 

These characteristics are why the probability theory and 

fuzzy mathematics are not very suitable when dealing 

with problems with small sample sets [19]. 

Several load forecasting models have been used in 

electric power systems for achieving accuracy. Among 

the models are statistical, linear regressions, ARMA, 

Box-Jenkins, filter model of Kalman. In addition, 

artificial intelligence has been introduced based on 

neural network, fuzzy logic, neuro-fuzzy system and 

genetic algorithm. Forecasting short, medium and long 

term electric load consumption with artificial neural 

network has received more attention because of its easy 

implementation, accuracy and good performance [20-25]. 

James et al. [26] in their study compare the accuracy and 

performance of several methods for load forecasting for 

lead times up to a day-ahead. They describe six 

approaches: double seasonal ARMA modeling, 

exponential smoothing for double seasonality, artificial 

neural network, a regression method with Principal 

Component Analysis (PCA) and two simplistic 

benchmark methods using a time series of hourly 

demand for Rio de Janeiro and a series of half-hourly 

demand for England and Wales. They conclude that in 

addition to its forecasting performance smoothing 

method is simplest and quickest to implement. Espinoza 

et al. [27] used a fixed-size least squares support vector 

machines for nonlinear estimation in NARX model for 

prediction the load at a given hour by the evolution of the 

load at previous hours. They conclude that the 

forecasting performance assessed for different load series 

is satisfactory with a mean square error less than 3% on 

the test data. Chen et al. [28] and all in their study are 

also used support vector machine techniques for med-

term load forecasting by constructing models on relative 

information such as climate and previous electric load 

data. They recommend the use of available complete 

information for medium-term load forecasting because 

taking climate factors into account may lead to imprecise 

prediction and that the use of time-series concept may 

improve the forecasting. Song et al. [29] present a new 

fuzzy linear regression method for the short term 24 

hourly electric loads forecasting of the holidays. Results 

shows relatively big load forecasting errors are 

significantly enhanced due to the dissimilar electric load 

pattern of the special days compared of regular 

weekdays. The use of neural network for short term load 

forecasting provides errors in case of speedy fluctuations 

in load and temperature. To overcome this problem, Jain 

et al. [30] uses an adaptive neuro-fuzzy to adjust the load 

curves on selected similar days which takes into account 

the effect of humidity and temperature. Results obtained 

show a good prediction with a small mean absolute 

percentage error. Furthermore, Neuro-fuzzy approaches 

have been used in short, medium and long term load 

forecasting [31]. 

The fuzzy theory combined with neural network by 

soft computing algorithms, have found a variety of 

applications in various fields including industrial 

environment control system, process parameters, semi-

conductor machine capacity forecasting, business 

environment forecasting, financial analysis, stock index 

fluctuation forecasting, consumer loan, medical diagnosis 

and electricity demand forecasting. Lin and George-Lee 

[32] conducted to combine the fuzzy theory with neural 

network. They proposed a hybrid model which combines 

the idea of fuzzy logic controller, neural network 

structure and learning abilities into an integrated neural-

network based fuzzy logic control and decision system. 

Subsequently, several researchers investigated some 

studies related to the application of this combined 

approach and then developed several kinds of approaches 

[33-40]. 

 The commonly used methods are as follows [41]: 

 Fuzzy adaptive learning control systems (FALCON) 

 Fuzzy back-propagation network (FBPN) 

 Adaptive neuro-fuzzy inference systems. (ANFIS) 

 Fuzzy hyper rectangular composite neural networks 

(FHRCNNs) 

 Fuzzy neural network (FuNN). 

Recently, Mordjaoui and Boudjema[31] presents an 

application of neuro fuzzy model with a high forecasting 

accuracy that depends on previous weekly load data and 

concluded that the ANFIS approach can accurately 

predict weekly load consumption and the performance of 

the proposed model is not affected by rapid fluctuations 

in power demand which is the main drawback of neural 

networks models. 

The main purpose of this study is to develop and test 

a model for short term electric load forecasting in order 

to cross the bypass of existing model based on large scale 

of data and much time consuming and complexity. The 

rest of this paper is organized as follows. Section 2 

introduces the building procedure of the grey forecasting 

model, while Section 3 presents its performance and 

compares it with that of other forecasting methods. 

Finally, Section 4 concludes this study. 

2. Material and Method 

2.1. Input parameters 

In this paper, an ANFIS network (adaptive neuro 

fuzzy inference system) was designed to map six 

parameters as input data for State of Johor, Malaysia 

including four demographic& economic parameters (i.e. 

Employment, GDP, Industry Efficiency and Population), 

and two meteorological parameters related to annual 
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weather temperature (i.e. lowest average annual 

temperature (CDD), and highest average annual 

temperature (HDD)).to electricity demand as output 

variable. 

2.1.1. Metrological Factors 

Various studies have investigated the influence of 

ambient air temperature, most times represented by 

heating and cooling degree-days, on electrical energy 

consumption [42-51]. However, temperature is not the 

only variable considered in the literature. Other primitive 

independent variables, such as relative humidity, 

clearness index, cloudiness, rainfall, solar radiation and 

wind speed[52-56], and derived variables including latent 

enthalpy-days, temperature–humidity index, Steadman’s 

indoor apparent temperature, cooling radiation-days and 

clothing insulation units ‘clo’[51, 57-59] have also been 

used by other researchers for the development of 

statistical models for energy consumption. In many cases 

modeling of electric energy consumption is multivariate, 

consisting in a mix between climate and other important 

economic factors. The main constituents of these 

economic factors are energy prices, income, Gross 

National Product (GNP), import and export values and 

energy demand index[54, 60-66]. Population and 

production in total manufacturing, together with 

temperature, have also been used by Bessec and Fouquau 

[67] for modeling monthly electricity consumption to a 

panel of 15 member states of the European Union over 

the last two decades. Moral-Carcedo and Vice´ns-Otero 

[68] in their analysis, proposed a logistic smooth 

threshold regression model with the temperature as a 

threshold variable. This allows the relationship between 

electricity consumption and temperature to depend on the 

level of the threshold variable i.e. the temperature. Time 

series analysis of daily electricity demand data reviles a 

‘‘U’’ shape relation between outdoor temperature and 

electricity demand [42, 44, 48, 53, 56, 60, 67-

70].According to Henley and Peirson [45], this response 

is caused by the differences between the ambient or 

outdoor temperature and the comfort or indoor 

temperature. When the differential between outdoor and 

indoor temperatures increases, the starting-up of the 

corresponding heating or cooling equipment immediately 

raises the demand for electricity. Naturally, the curve of 

the response of demand to temperatures depends 

especially on the climate characteristics of the 

geographical area to which the demand data refer[71]. 

While variations in temperatures are an important 

determinant  in electricity demand (especially by the 

residential sector), Pouris [72] notes that in studies using 

annual data from  countries where residential sector 

accounts for a small share of  total electricity consumed, 

changes in temperatures tend to exhibit less explanatory 

power. This evidence is augmented by Diabi [73] who 

argues that if temperature exhibits less  variation between 

years, then it will matter very little in explaining 

variability in electricity demand[74]. 

2.1.2. Economic Factors 

Higher real incomes should result in higher levels of 

economic activity and accelerate purchases of electrical 

goods and services. Across the world, the electricity 

supply industry is a highly capital intensive venture 

requiring generating plants that are expensive to construct 

and take relatively long lead times before being 

operational. For this reason, rigorous analysis of the 

determinants of electricity demand as well as its accurate 

forecasting are of vital importance in the design of an 

effective energy policy to deal with current and future 

electricity needs[74]. 

Adom et al. [75] investigated for the factors 

responsible for the historical growth trends in aggregate 

domestic electricity demand quantifying their effects both 

in the short-run and long-run periods using the ARDL 

Bounds co-integration approach and the sample period 

1975 to2005. In the long-run, real per capita GDP, 

industry efficiency, structural changes in the economy, 

and degree of urbanization are identified as the main 

driving force behind the historical growth trend in 

aggregated domestic electricity demand. However, in the 

short-run, real per capita GDP, industry efficiency, and 

degree of urbanization are the main drivers of aggregate 

domestic electricity demand. Industry efficiency is the 

only factor that drives aggregate domestic electricity 

demand downwards. However, the negative efficiency 

effect is insufficient to have outweighed the positive 

income, output, and demographic effects, hence the 

continual growth in aggregate domestic electricity 

demand. 

Electricity is one of the energy types that have 

attracted a lot of interest due to its versatility. Literature 

on empirical analysis of electricity demand abounds but 

most of these studies are micro based with special focus 

on developed countries [71, 76-84]. 

Most studies have focused on the relationship between 

electricity demand and economical parameters such as 

gross domestic product (GDP), Gross National Product 

(GNP), national income, and the rate of employment as 

well as unemployment. Sari and Soytas [85] studied the 

relationship between different sources of electricity 

consumption, employment and national income growth in 

Turkey.  Narayan and Smyth [86]carried out the same 

study in Australia. They evaluated both long and short 

term relationship between electricity consumption, 

employment and real income. Relationships between 

GDP and electricity consumption in ten newly 

industrialized Asian countries were estimated by Chen et 

al.[87]. They studied long run relationship in China, Hong 

Kong, India, Indonesia, Korea, Malaysia, Philippines, 
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Singapore, Taiwan and Thailand. In another attempt, 

German Institute for Economic Research (DIW) was 

commissioned by “German Advisory Group on Economic 

Reform in Ukraine” in 1998 to predict electricity demand 

in Ukraine until the year 2010. A comparison of the 

relationship between renewable and non-renewable 

electricity consumption and real GDP in the US using 

annual data from 1949 to 2006 was done by Payne[88]. 

Bowden and Payne[89]used these data in 2008 to check 

the causal relationship between electricity consumption 

and real GDP. Studying the time series properties of 

electricity consumption of G-7 countries was the subject 

of Soytas and Sari [90]. In Pakistan, Aqeel and Butt [91] 

found out that economic growth affects the total 

electricity consumption.  They also discovered that 

economic growth leads to growth in petroleum 

consumption but however electricity consumption leads 

to economic growth without feedback. De Vita et al. [92] 

found the same results for Namibia. Their research for the 

period between the year 1980 to 2002 showed that 

electricity consumption respond positively to changes in 

GDP and negatively to changes in electricity price and air 

temperature. Hainoun et al. [93] found that both 

electricity and electricity demand growth rates are lower 

than the corresponding GDP growth rates in Syria. In 

some literatures, other parameters which are not 

economical are also selected. For example Valor et al. 

[94] tried to analyze the relationship between electricity 

load and daily air temperature in Spain. More recently 

many studies have been conducted on short/long term 

electricity demand/load forecasting [95-107], but 

application of neuro fuzzy logic for forecasting electricity 

demand based on combined economic and climate 

conditions is still unexplored. In this paper, an ANFIS 

network (adaptive neuro fuzzy inference system) was 

designed to map six parameters as input data including for 

demographic parameters (i.e. Employment, GDP, 

Industry Efficiency and Population), and two 

meteorological parameters related to annual weather 

temperature (i.e. HDD and CDD) to electricity demand as 

output variable. 

The measure of industry efficiency follows from Lin 

[108] and Zuresh& Peter[109] where the ratio of industry 

value added as a percent of GDP to industry consumption 

of electricity is used to capture the efficiency effect in 

their model. However, our measure of structural changes 

in the economy follows from Zuresh and Pete r[109] 

where the share of industry output in total output is used 

as a proxy. Using this approach we focus on the impact 

on electricity consumption as the economy move towards 

the more energy intensive sectors which we capture by 

increases in industry value added as a percent of GDP. 

We expect this to have a positive effect on aggregate 

domestic electricity consumption. 

 

3. Neuro-fuzzy model formulation 

Neuro-Fuzzy is combination of two approaches: ANN 

and fuzzy logic. In this case, a brief description of ANN is 

presented which is followed by fuzzy systems description. 

 
3.1. Artificial Neural Network 

The history of ANN begins with the pioneering work 

of McCulloch and Pitss [1] who first introduced the idea 

of ANN as computing machines. Ability to find nonlinear 

and complex relationships has been the main reason for 

the popularity of ANN applications in various branches of 

science and also in industrial managements [2-3]. Image 

processing [4], document analysis [5], engineering tasks 

[6-7], financial modeling[8], biomedical ([9]) and 

optimization[10] could be perfect examples of the various 

applications of ANN in different branches of sciences. 

One of the serious problems with ANN is lack of 

interpretation. Wieland et al. [11] claimed that ANN fails 

to improve the explicit knowledge of the user. Limitations 

in catching casual relationships between major system 

components were mentioned as the main reason. ANN is 

also poor in extrapolation. It fails to deal properly with 

data out of training range. 

 
3.1.1. Fuzzy Systems 

Fuzzy sets are basic concepts of fuzzy logic which 

was proposed by Prof. Lotfi A. Zadeh in 1965. Unlike 

Boolean logic, fuzzy logic believes one element can 

belong to more than one set at a same time [12]. A simple 

example can help to compare the set types in these two 

logics. Set A is assumed to be the universal set which 

included all numbers from 0 to 10. Numbers between 2 to 

8 stand in set B. Borders of sets are completely clear. In 

order to recognize the members of set B, all numbers in 

set A which exist in set B are valued by 1 and others take 

0 (Figure 1). 

 

 

 

 

 

 

 

 

 

 

Figure 1: Boolean sets 

The problem however lies in showing some vague 

subsets like subset of “big numbers”. What would be the 

correct criteria to recognize the big numbers among 0 to 

10? Boolean logic defines specific borders for such cases. 

If 8 be the set point, the numbers below and above 8 will 

be categorized as small and big numbers, respectively. 
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Problem arises as some numbers like 7.9 and 8.1 are 

studied. Fuzzy logic believes 0.2 difference between two 

numbers cannot make one big and the other small. In this 

case, fuzzy logic defines specific membership degrees 

which determine the degree by which, each element 

belongs to different sets. These sets are known as fuzzy 

sets. Figure 2 shows the fuzzy sets of the discussed 

example. Numbers below 7 have membership degree of 

zero which means they do not belong to the set and 

numbers between 7 to 10 receive degrees based on their 

values. 

 

 

 

 

 

 

 

 

 

 

Figure 2: Fuzzy sets 

 Graphs like that in Figure 2 are known as 

“Membership Function (MF)” in fuzzy logic. 

Membership functions present different categories of 

different inputs by fuzzy sets.  

Fuzzy rules are used to combine defined concepts 

(like big, small, hot, cool and etc.) in order to catch the 

relationships between the data. The application of fuzzy 

rules is shown by an example: 

If pressure is high, and temperature is high, then 

system is in critical condition 

This rule combines pressure, temperature, and system 

variables together with concepts like high and critical 

condition (which should be defined in different MFs for 

applying in fuzzy logic). Rules are generated by an expert 

who has the knowledge and experience over the subject. 

Fuzzy rules combine variables and fuzzy sets 

(membership functions) together based on expert 

decisions. A general form of a fuzzy rule (known as if-

then rules) is  

If x is A and y is B, then z is C 

Where A, B and C are pointing out fuzzy subsets 

(membership functions) and x, y and z are variables. 

Word “and” in this phrase needs to be determined with 

special equation. There are different equations to define 

operators “OR” and “AND” in fuzzy rules. 

There are specific issues regarding fuzzy inference 

system (FIS) which demands better understanding. The 

main problem with FIS is inadaptability. Unlike ANN, 

FIS cannot adapt itself with new environment or data. An 

expert has to define rules for FIS. The generated rules 

deal with relationships between the data and FIS fails to 

perform as it faces a new condition which has not been 

defined  in terms of fuzzy rules [13].  

The idea of ANFIS arises from the limitations and 

drawbacks of ANN and FIS and tries to design more 

reliable approach by combining ANN and FIS. 

3.1.2. Adaptive Neuro-Fuzzy Inference System 

ANFIS, which used to stand for adaptive network-

based fuzzy inference system was proposed by Jang [14].  

Hybrid learning method and back propagations are the 

main choices for learning methods. In fuzzy section, only 

zero or first-order Sugeno inference system or Tsukamoto 

inference system can be used, and output variables are 

achieved by applying fuzzy rules to fuzzy sets of input 

variables [13, 15-17]: 

Rule 1: if x is   and y is   , then   =  x +   y +    

      (1) 

Rule 2: if x is   and y is   , then   =  x +   y +   
      (2) 

Where   ,   ,   , and    are linear parameters and 

  ,   ,   , and    nonlinear. Figure 3 shows 

architecture of a two input first-order Sugeno FIS model 

with two inputs and rules. Architecture includes five 

layers: fuzzy layer, product layer, normalized layer, 

defuzzifier layer, and total output layer. 

Each node in this Figure represents a node function 

which has adjustable parameter, and nodes in same layers 

follow same functions. The learning algorithm of neural 

network seeks for the best values of model parameters, 

and performance of the network is evaluated based on 

training and testing data. The main task of the mentioned 

learning algorithms (back propagation and hybrid 

learning) is to reach the minimized errors like Root Mean 

Square Error (RMSE). Next section discusses the 

procedure of transforming input to output in ANFIS based 

on the five mentioned layers. Figure 3 represents 

schematic of an ANFIS. In this Figure, fuzzy layer 

consists of nodes   ,   ,   , and   , which receive the 

inputs x and y, respectively.   ,   ,   , and 

  represent linguistic labels or fuzzy sets (like fast, big, 

etc), which apply fuzzy membership functions and 

determine by which degree each input belongs to the sets. 

This mapping can be shown as: 

    =   
(x), for i= 1,2    (3) 

    =   
(y), for j= 1,2    (4) 

in which x (or y) is input to node I and     (or   ) is the 

fuzzy set.      determines the degree to which the input 

belongs to the set. Guassian curve or the generalized bell-

shaped membership functions are usually used for 

   
(x)and    

(y) [13, 18]: 

   
(x) = 

 

      
  
  

     

   (5) 

Set A 

In
d
ex

 o
f 

m
em

b
er

sh
ip

 i
n
 s

et
 B

 

0 

1 

7 10 



Electricity Demand Estimation Using an Adaptive Neuro-Fuzzy Network: A Case study from the State of Johor, Malaysia 

 

 

   
(x) = exp [- 

    

  
  

]   (6) 

Where {  ,   , and   } is the parameter set. The bell-

shaped functions changes based on changes of the 

parameter set, resulting in different forms of membership 

functions.  

There are two nodes labeled “П” in product layer. As 

they receive the signals, they multiply it and make the 

layer outputs (   and     which will be the weight 

functions of next layer. The output of this layer can be 

expressed as [13, 15, 19]: 

    =   =    
(x)   

(y) for i = 1,2  (7) 

where     stands for the product layer output. 

The layer with nodes labeled “N” is the normalized 

layer. The outputs of the previous layer nodes represented 

the firing strength of a rule [13, 18]. The i
th

 node 

calculates the ratio of the i
th

 rules firing strength to the 

sum of all rule’s firing strengths [20]. The weight 

function gets normalized by [13, 15, 18-19]:   

     =    = 
  

     
 for i = 1,2  (8) 

Therefore, the output of this layer (    ) is called the 

normalized firing strengths. 

The fourth layer with adaptive nodes is the 

defuzzification layer. In fact, the signals which have been 

fuzzified at the beginning of the process get defuzzifed 

and return to normal form. The relationship in this layer 

can be written as [13, 15, 18-19]: 

     =      =       x +   y +   ), for i= 1,2 (9) 

The output of layer four is     , while     stands for 

normalized firing strength from layer 3, and {  x +   y + 

  } represents the parameter set. 

The last layer with a single node labeled “Ʃ” is total 

output layer, which represents the final decision 

according to [13, 15, 18-19]: 

    = overall output= ∑       = 
∑      

∑    
  (10) 

Here      refers to the output of last layer. 

ANFIS combines ANN and fuzzy-logic in order to 

benefit their advantages. It follows ANN topology with 

fuzzy-logic, and aims to remove the disadvantages of both 

which enables this method to deal with complex and 

nonlinear cases Unlike ANN, there is no vagueness in 

ANFIS [16, 21]. In addition, since learning duration in 

ANFIS is shorter than ANN, ANFIS can approach the 

demanded target faster. So, it can be concluded that using 

ANFIS instead of ANN in sophisticated and complex 

systems can be more effective in order to overcome the 

complexity of the problem [22]. 

 

 
 

Figure 3: ANFIS structure with two inputs and two rules 

4. Results and discussion 

4.1. Designed network structure 

As mentioned in the previous section, Employment, 

GDP, Industry Efficiency, Population, HDD, and CDD 

are the input variables of the model. Based on these data, 

an ANFIS network with Sugeno-style inference system 

has been designed which maps these six independent 

variables as input data to electricity demand as output. 

MATLAB 2010a was employed for model building. 

Three Gaussian membership functions have been 

considered for each input data. Figure 4 shows the final 

and best obtained membership functions. 

x y 
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Figure 4: Membership functions of (a) Employment, (b) GDP, (c) 

 Industry Efficiency, (d) Population, (e) HDD and (f) CDD 

From 21 available data sets, 15 sets were selected to 

train the network. Five data sets were applied to test the 

trained network, and one set which is related to the 

electricity demand in 2011 is used for validating the 

network. The procedure ensures that the designed 

network produces good results for any range of data. 

After training the network, a mean square error (MSE) 

of 2.954 × 10-5 was obtained for training the data. The 

low training error enabled the trained network to estimate 

unseen data with high precision (Fig.5). 

 
Figure 5: Targets vs. outputs for training data 

The best obtained network MSE is 0.0016 for test 

data. Figure 6 depicts network estimation for the test data. 

 
Figure 6: Targets vs. network outputs for testing data 

4.2. Model Validation 

In order to build a forecasting model to the year 2030, 

a linear trend was assumed. These lines are shown in 

Figures 7 and 8 and their equations are listed in Table 1. 

 
(a) 

 
(b) 

 
(c)  

(d) 

 
(e) 

 
(f) 
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Figure 7: Trend of HDD 20 year average change in period 1990-

 2010 

 

 

Figure 8: Trend of CDD 20 year average changing in period 1990-

 2010 

Table 1: Average changing for HDD and CDD for 20 years 

Parameter Equation of fit curve 

HDD y = 0.01 X + 11.7 

CDD y = -0.02 X + 62.9 

 

These equations can be used to find the average values 

for the next 19 years period from 2012 to 2030. Having 

the values of all input parameters for the year 2011, the 

electricity demand for the year can be predicted. The 

calculated value is 35210.33 Wh while the real reported 

value is 34450.2. It means an acceptable validation for the 

model and confirms its ability to predict electricity 

demand in future years. It is important to note that the 

year 2011 is out of the data set used to design the 

network, and that the HDD and CDD parameters were 

calculated and not measured.  

4.3.  Prediction of electricity demand until 2030 

After validating the model, it can be used to forecast 

the electricity demand in future. In this case, future inputs 

are needed. In this regard, the average values for every 5 

years have been calculated to find out whether they have 

a special trend. Figures 9 to 14 illustrate the trend of 

changes in employment, GDP, industry efficiency, 

population, HDD, and CDD from 1990 to 2010. 

 
Figure 9: Trend of five years average employment change from 

 1990-2010 

 

 
Figure 10: Trend of five years average GDP change from 1990  

 to 2010 

 

 
Figure 11: Trend of five years average industry efficiency change 

 from 1990 to 2010 
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Figure 12: Population five years average change from 1990 to 2010 

 

 
Figure 13: Trend of HDD five year average change from 1990 to 

 2010 

 

 
Figure 14: Trend of CDD five year average change from 1990 to 

 2010 

Noting the figures, a linear line was fitted to the data 

based on the linear trend of the data. Table 2 provides the 

linear equation form. 

 

 

 

 

 

Table 2: Input parameters trends 

Parameter Equation of fitted curvea 

Employment Y= 141.4 X + 0.2217 

GDP Y= 15628 X + 22712 

Industry Efficiency Y= 322.7875 X - 633782 

Population Y= 0.0331 X – 63.265 

HDD Y= 6.9 X2 + 15.5 X + 0. 7 

CDD Y= 12 X2 - 16.5 X + 3 

 

By using these equations, it is possible to predict the 

values of these parameters in the future (in this paper 

2012-2030).  

In this case, using the fitted equations, all six 

independent variables for the next nineteen years (2012-

2030) were obtained. Using these inputs, ANFIS network 

can provide estimations. Figure 15 depicts electricity 

demand value from 1990 to 2030. In this figure, blue 

markers refer to recorded data and red markers 

correspond to the model estimations. 

 

 
Figure 15: Estimation of electricity demand from 1990 to 2030 

5. Conclusion and Remarks 

In this paper, an ANFIS network (adaptive neuro fuzzy 

inference system) was designed to map six parameters as 

input data (i.e. Employment, GDP, Industry Efficiency, 

Population, HDD, and CDD) to electricity demand as 

output variable. The network had excellent forecasting 

capacity with MSE of 0.0016. In the last part, electricity 

demand was predicted until 2030.  
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