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A B S T R A C T

The present paper is designed to study the structure of some compact objects such as
𝑃𝑆𝑅𝐽1614 − 2230, 𝐿𝑀𝑋𝐵 4𝑈1608 − 52, 𝐶𝑒𝑛𝑋 − 3, 𝐸𝑋𝑂1785 − 248 and 𝑆𝑀𝐶𝑋 − 1 in the
framework of 𝑓 (𝑇 , 𝜏) gravity, where 𝜏 and 𝑇 represent the trace of energy–momentum tensor
and torsion scalar, respectively. For this work, we use anisotropic fluid distribution filled in
spherical symmetric geometry providing the interior of star model and utilize the off-diagonal
tetrad components for deriving the corresponding set of field equations. We construct stellar
structure by using a well-known model of 𝑓 (𝑇 , 𝜏) gravity, given by 𝑓 (𝑇 , 𝜏) = 𝛼𝑇 (𝑟)2 + 𝛽𝜏(𝑟) +𝜙,
where 𝛼, 𝛽 and 𝜙 are arbitrary constants. This model has interesting cosmological properties,
in addition to providing an effective dark energy sector explanation (Harko et al., 2014). For
checking viability of the constructed model, we set 𝛼 < 0, 𝛽 < 0 and discuss physical and
stability features like anisotropy, energy conditions, EoS parameters, TOV equation, redshift,
compactness and mass function of strange stars. It is found that these features comprehensively
match with the realistic nature of compact stars in the realm of 𝑓 (𝑇 , 𝜏) gravity.

. Introduction

Accelerated expansion of our cosmos and the search of its responsible factor has drawn considerable attention of the cosmologists
n modern astrophysics [1,2]. In this respect, different observational data sets are available in literature which directly or indirectly
upport this phenomena of cosmic acceleration [3–5]. It has been argued that a dominant unusual kind of energy, covering almost
2% of the total cosmos matter distribution, is a major cause of this cosmos expansion. This obscure natured force having strong
egative pressure is named as dark energy (DE). Although general theory of relativity (GR) is regarded as a primary gravitational
ramework but it malfunction to produce adequate results while analyzing the phenomenon of cosmic acceleration. The exploration
f a satisfactory candidate of DE has posed a substantial challenge for researchers and as a result, numerous approaches have been
resented in literature. These approaches either extend the matter part or the curvature sector of the action of GR and hence labeled
s extended matter proposals or modified gravity theories, respectively. A careful comparison of both techniques suggested that the
urvature part extension, i.e., the modified theories are more useful in investigating different cosmic aspects. For the review of these
nteresting candidates, one can refer to the literature [6].

The 𝑓 (𝑇 ) gravity is a well-known gravitational framework which is based on ‘‘teleparallel’’ approach (initially provided a theory
quivalent to GR and is known as TEGR) [7]. The TEGR and its 𝑓 (𝑇 ) extension both involve the Weitzenbock connection as a
undamental tool where the gravitational part is described by the torsion only and consequently is free from curvature. Using a good
etrad (non-diagonal), adequately correlates with the isotropic spherically symmetric metric. In 𝑓 (𝑇 ) gravity, dynamical equations
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display an extra degree of freedom as its matter distribution is constructed under non-variant Lorentz transformation [8]. Thus 𝑓 (𝑇 )
ravity is an approximate generalization of TEGR promising the gravitational part of Lagrangian as a function of torsion 𝑇 [8,9].

On the cosmological landscape, 𝑓 (𝑇 ) theory of gravity has been used by several researchers and proved to be very promising, for
reference, one can see the literature [10]. In parallel to the ideas used for the extension of Einstein–Hilbert action, one can also utilize
same ideas to generalize TEGR as well as 𝑓 (𝑇 ) theories. Following a similar pattern, some interesting general teleparallel frameworks
have been proposed [11] like 𝑓 (𝑇 , 𝑇𝐺) theory, 𝑓 (𝑇 , 𝐵) gravity, 𝑓 (𝑇 , 𝐿𝑚) framework and higher-order derivative of torsion based
teleparallel theory etc. In addition to this, another idea was to combine both modified matter and geometry approaches together
and develop a single generalized formulation. Based on this idea, some interesting extensions of GR includes 𝑓 (𝑅, 𝑇 ) gravity [12],
𝑓 (𝑅,𝐿𝑚) [13] and 𝑓 (𝑅, 𝑇 ,𝑄) theories [14], where 𝑇 is the trace of energy–momentum tensor. Likewise, an extension of 𝑓 (𝑇 ) gravity
based on such idea was formulated namely 𝑓 (𝑇 , 𝜏) theory (𝜏 is the energy–momentum tensor trace) and found to be very significant
on cosmological grounds [15–17].

Study of compact stars is a hot topic of discussion for modern researchers in the framework of different modified theories.
Compact stars are hugely dense than ordinary stars having small radius and bulky mass. Compact star come into existence as a
result of evolutionary stage of an ordinary star when the fusion processes start inside its core and the star do not balance the
gravitational forces present in it and hence the star collapse under its own weight. Highly dense objects in astrophysics containing
strange quark matter of (𝑢), (𝑑) and (𝑠) [18–20] are known as strange stars. On the basis of large amount of observational data
available, it is shown that 𝐻𝑒𝑟𝑋 − 1, 4𝑈1820 − 30 and 𝑃𝑆𝑅𝐽1614 − 2230 are good contestants of strange star [21–23].

At first, Schwarzschild [24,25] presented the interior solution of a stellar object filled with isotropic fluid (in which radial and
tangential pressure are equal). Later, Ruderman [26] studied the anisotropic (𝑝𝑟 ≠ 𝑝𝑡) fluid distribution of the stellar structures. In
the framework of GR, anisotropic effects on spherically symmetric compact stellar distribution have been described by numerous
authors including Ivanov [27], Mak and Harko [28], Hossein et al. [29], Kalam et al. [30], Bahar [31] and Maurya et al. [32]. In the
context modified gravity theories, several investigators have conducted significant discussions about the existence and construction
of compact stars by exploring their theoretical and analytical features. In order to see some examples of compact star models
proposed in modified gravity theories, one can see the literature [33–39].

In the construction of compact stellar objects, one of most interesting and successful tools is the application of Karmarkar
condition. The Karmarkar condition suggests a relationship between the metric components and then by considering one of the
gravitational components of metric say 𝑔𝑡𝑡, the other component 𝑔𝑟𝑟 can be calculated easily. In this way, a 4-dimensional Riemanian
space–time can be embedded into a 5-dimensional pseudo–Euclidean space–time (known as embedding class I metric) without
altering its inner properties. It has been argued that embedding class I is a necessary condition to get solutions via Karmarkar
condition and the solutions obtained, in this way, are termed as embedding class I solutions. In the papers [40,41], authors have
elaborated the process of embedding a 4-dimensional Riemanian metric into 5-dimensional Euclidean metric. In the recent past,
plenty of work so far have been done by different researchers on the subject of anisotropic compact stars existence and construction
in different gravitational frameworks like Pandya et al. [42], Abbas et al. [43], Jaya et al. [44], Pandya and Thomas [45], Mustafa
et al. [46], Abellán et al. [47] and Ramos et al. [48] by using Karmarkar condition. Likewise, Maurya and his collaborators [49]
presented some interesting models on this subject and found significant results. In the context of 𝑓 (𝑇 , 𝜏) gravity, Salako et al. [50]
discussed the existence of compact star models using diagonal tetrad obtaining some interesting results. In another study, Saleem
et al. [51] constructed model representing LMC X-4 and Vela X-1 compact stars using specific linear function in 𝑓 (𝑇 , 𝜏) gravity and
described the physical significance of their models.

Motivated by these good antecedents, here we shall study anisotropic models representing some compact objects, such as
𝑃𝑆𝑅𝐽1614 − 2230, 𝐿𝑀𝑋𝐵4𝑈1608 − 52, 𝐶𝑒𝑛𝑋 − 3, 𝐸𝑋𝑂1785 − 248 and 𝑆𝑀𝐶𝑋 − 1 via embedding approach, in 𝑓 (𝑇 , 𝜏) gravity
scenario by using static spherically symmetric metric as interior geometry. So, the article is organized as follows: In the upcoming
Section 2, we shall explain the preliminary concepts of 𝑓 (𝑇 , 𝜏) formulation and also introduce the well-known Karmarkar condition
o obtain the generalized solution of the respective field equations. In Section 3, we shall describe the matching conditions of inner
nd outer geometries of compact star and calculate the values of unknown constants. In Section 4, we shall explore the viability of
he constructed structure by analyzing some interesting and essential features of compact stars, like the impact of local anisotropies,
alidity of energy conditions, EoS parameters, causality and stability conditions. Next, in Section 5 the redshift, adiabatic index,
ompactness and mass function of the model are analyzed by means of a graphical study. Finally, Section 6 concludes the work.

. Basics of 𝒇 (𝑻 , 𝝉) gravity, its field equations and an introduction to embedding approach

In this section, we shall present a brief introduction to 𝑓 (𝑇 , 𝜏) modification of teleparallel theory and its resulting field equations
for spherically symmetric space time. Here we shall also list some essential assumptions taken for this work. Similar to 𝑓 (𝑅, 𝑇 )
gravity which is considered as one of the most interesting and successful extension of 𝑓 (𝑅) and hence of GR, the teleparallel theory
can be extended to a viable form by including the trace of energy–momentum tensor term in its 𝑓 (𝑇 ) generalization. The TEGR and
ts modifications are based on a key ingredient of curvature-less Wietzenbock connection and the orthogonal tetrad field components
n tangential space manifold. The action of 𝑓 (𝑇 , 𝜏) gravity is defined by the equation [15,50]

𝑠 = 𝑑𝑥4ℎ
[

1 𝑓 (𝑇 , 𝜏) + (𝑀)

]

, (1)
1828

∫ 2𝑘2
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where (𝑀) is the ordinary matter Lagrangian density and 𝑓 is an arbitrary function depending on upon the trace of energy–
momentum tensor denoted by 𝜏 and the torsion scalar 𝑇 . Basically, 𝐿𝑀 represents the ordinary matter Lagrangian density and the
corresponding energy–momentum tensor 𝜏𝜉𝜓 is defined as follows [50]

𝜏𝜉𝜓 = −2
√

−𝑔

𝛿(
√

−𝑔𝐿𝑀 )

𝛿𝑔𝜉𝜓

and then the trace of energy–momentum tensor is defined as 𝜏 = 𝑔𝜉𝜓𝜏𝜉𝜓 . Since 𝐿𝑀 depends on the metric components only, not its
derivatives, therefore we can write

𝜏𝜉𝜓 = 𝑔𝜉𝜓𝐿𝑀 − 2
𝜕𝐿𝑀
𝜕𝑔𝜉𝜓

.

n the present work, we shall consider the anisotropic fluid as ordinary matter contents. Also, here ℎ = 𝑑𝑒𝑡
(

ℎ𝐴𝜇
)

=
√

−𝑔 and
𝑘2 = 8𝜋𝐺 = 1. The variation of the action given above with respect to the tetrad results into the following set of general field
equations:

ℎ𝑖
𝛾𝑆𝛾

𝜇𝜈𝑓𝑇𝑇 𝜕𝜇𝑇 + ℎ𝑖𝛾𝑆𝛾 𝜇𝜈𝑓𝑇 𝜏𝜕𝜇𝜏 + ℎ−1𝜕𝜇(ℎℎ𝑖𝛾𝑆𝛾 𝜇𝜈 )𝑓𝑇 − ℎ𝑖𝜆𝑇 𝛾 𝜇𝜆𝑆𝛾 𝜈𝜇𝑓𝑇 − 1
4
ℎ𝑖
𝜈𝑓 + 𝑓𝑇𝜔𝛾 𝑖𝜇𝑆𝛾 𝜇𝜈

−
𝑓𝜏
2
(ℎ𝑖𝛾𝜏𝛾 𝜈 + 𝑝𝑡ℎ𝑖𝜈 ) = −4𝜋ℎ𝑖𝛾𝜏𝛾 𝜈 , (2)

where 𝜏𝜈𝛾 is the notation for energy–momentum tensor of ordinary matter. These set of dynamical equations involve the first and
second-order derivatives of the function 𝑓 which are represented by the notations 𝑓𝑇 = 𝜕𝑓

𝜕𝑇 , 𝑓𝑇𝑇 = 𝜕2𝑓
𝜕𝑇 2 , 𝑓𝜏 =

𝜕𝑓
𝜕𝜏 and 𝑓𝑇 𝜏 =

𝜕2𝑓
𝜕𝑇 𝜕𝜏 . It

would be worthy to mention here that we have taken the spin connection as zero in the beginning, i.e., 𝜔𝛾 𝑖𝜇 = 0. The building blocks
of TEGR namely torsion, contorsion and super potential tensors, which are also present in Eq. (2), can be written, respectively, as

𝑇 𝜆𝜇𝜂 = ℎ𝜗
𝜆(𝜕𝜇ℎ𝜗𝜂 − 𝜕𝜂ℎ𝜗𝜇), (3)

𝐾𝜇𝜂
𝜆 = −1

2
(

𝑇 𝜇𝜂𝜆 − 𝑇 𝜂𝜇𝜌 − 𝑇𝜆𝜇𝜂
)

, (4)

𝑆𝜆
𝜇𝜂 = 1

2
(

𝐾𝜇𝜂
𝜆 + 𝛿𝜇𝜆𝑇 𝛾𝜇𝛾 − 𝛿𝜂𝜆𝑇 𝛾𝜇𝛾

)

. (5)

he density of teleparallel lagrangian is defined by torsion scalar and is given by

𝑇 = 𝑇 𝜆𝜅𝜂𝑆𝜆
𝜅𝜂 . (6)

or the construction of compact star structure in this gravity, let us consider the spacetime geometry which exhibits the symmetry
hat is closest to the one available in nature, the spherically symmetry, and is defined by the following line element:

𝑑𝑠2 = 𝑒𝜁 (𝑟)𝑑𝑡2 − 𝑒𝜒(𝑟)𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2 sin2 𝜃𝑑𝜙2, (7)

here 𝜁 (𝑟) and 𝜒(𝑟) are the radial coordinate dependent unknown functions. It is interesting to mention here that the choice of
etrad components play a vital role in setting up the dynamical equations and consequently, in the construction of stellar structures.
o, the selection of good tetrad components is mandatory in this respect. For the present work, we have considered the off-diagonal
good) tetrad components and the corresponding 𝑓 (𝑇 , 𝜏) gravitational field equations can be written as [52–54]

ℎ𝜂𝛾 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑒
𝜁 (𝑟)
2 0 0 0

0 𝑒
𝜒(𝑟)
2 sin 𝜃 cos𝜙 𝑟 cos 𝜃 cos𝜙 −𝑟 sin 𝜃 sin𝜙

0 𝑒
𝜒(𝑟)
2 sin 𝜃 sin𝜙 𝑟 cos 𝜃 sin𝜙 𝑟 sin 𝜃 cos𝜙

0 𝑒
𝜒(𝑟)
2 cos 𝜃 −𝑟 sin 𝜃 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (8)

For this choice of tetrad component, the value of its determinant denoted by ℎ = ℎ𝜂𝛾 takes the form as 𝑒𝜁 (𝑟)+𝜒(𝑟)𝑟2 sin 𝜃. Let us
consider the interior of compact star is filled with an ordinary matter exhibiting anisotropic properties and is defined by the
energy–momentum tensor

𝜏(𝑚)𝜉𝜓 = (𝜌 + 𝑝𝑡)𝑢𝜉𝑢𝜓 − 𝑝𝑡𝑔𝜉𝜓 + (𝑝𝑟 − 𝑝𝑡)𝑣𝜉𝑣𝜓 , (9)

where the velocities satisfy the relations 𝑢𝜉 = 𝑒
𝜇
2 𝛿0𝜉 and 𝑣𝜉 = 𝑒

𝜁
2 𝛿1𝜉 , and the symbols 𝜌, 𝑝𝑟 and 𝑝𝑡, refer to the energy density, radial and

angential pressures, respectively. This further can be re-written as in the diagonal form: 𝜏(𝑚)𝜉𝜓 = [𝜌,−𝑝𝑟,−𝑝𝑡,−𝑝𝑡] and consequently,
he trace of energy–momentum tensor will take the form as follows

𝜏 = 𝛿𝜈𝜇𝑇
𝜇
𝜈 = 𝜌 − 𝑝𝑟 − 2𝑝𝑡. (10)

sing the tetrad components, the torsion scalar and its radial rate of change denoted by 𝑇 ′(𝑟) can be written as

𝑇 (𝑟) =
2𝑒−𝜒(𝑟)

(

𝑒
𝜒(𝑟)
2 − 1

)(

𝑒
𝜒(𝑟)
2 − 𝑟𝜁 ′(𝑟) − 1

)

, (11)
1829

𝑟2
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𝑇 ′ = −
4𝑒−𝜒(𝑟)

(

𝑒
𝜒(𝑟)
2 − 1

)(

𝑒
𝜒(𝑟)
2 − 𝑟𝜁 ′(𝑟) − 1

)

𝑟3
+
𝑒−

𝜒(𝑟)
2 𝜒 ′(𝑟)

(

𝑒
𝜒(𝑟)
2 − 𝑟𝜁 ′(𝑟) − 1

)

𝑟2

−
2𝑒−𝜒(𝑟)

(

𝑒
𝜒(𝑟)
2 − 1

)

𝜒 ′(𝑟)
(

𝑒
𝜒(𝑟)
2 − 𝑟𝜁 ′(𝑟) − 1

)

𝑟2
+

2𝑒−𝜒(𝑟)
(

𝑒
𝜒(𝑟)
2 − 1

)(

1
2 𝑒

𝜒(𝑟)
2 𝜒 ′(𝑟) − 𝑟𝜁 ′′(𝑟) − 𝜁 ′(𝑟)

)

𝑟2
. (12)

he dynamical field equations of 𝑓 (𝑇 , 𝜏) gravity (2) for the metric (7) are given by

𝜌 = −
𝑒−

𝜒(𝑟)
2

(

𝑒−
𝜒(𝑟)
2 − 1

)

(

𝑓TT𝑇 ′ + 𝑓T𝜏𝜏′
)

𝑟
− 1

2
𝑓𝑇

(

−
𝑒−𝜒(𝑟)

(

1 − 𝑟𝜒 ′(𝑟)
)

𝑟2
− 1
𝑟2

+
𝑇 (𝑟)
2

)

+
𝑓
4
+ 1

2
𝑓𝜏 (pt + 𝜌), (13)

𝑝𝑟 =

(

𝑒−𝜒(𝑟)
(

𝑟𝜁 ′(𝑟) + 1
)

𝑟2
− 1
𝑟2

+
𝑇 (𝑟)
2

)

𝑓𝑇
2

−
𝑓
4
− 1

2
𝑓𝜏 (pt − pr), (14)

𝑝𝑡 =
1
2
𝑒−𝜒(𝑟)

(

− 𝑒
𝜒(𝑟)
2

𝑟
+
𝜁 ′(𝑟)
2

+ 1
𝑟

)

(

𝑓TT𝑇
′ + 𝑓T𝜏𝜏

′)+
[

𝑒−𝜒(𝑟)
((

𝜁 ′(𝑟)
4

+ 1
2𝑟

)

(

𝜁 ′(𝑟) − 𝜒 ′(𝑟)
)

+
𝜁 ′′(𝑟)
2

)

+
𝑇 (𝑟)
2

] 𝑓𝑇
2

−
𝑓
4
, (15)

where we have used off-diagonal tetrad components (8) and energy–momentum tensor (9). It can be easily checked that the above
system of equations is not closed (three equations are involving 6 unknowns to be computed). In order to get solutions, we need
to assume three conditions for the involved unknowns. In the present work, we shall utilize a well-famed model of 𝑓 (𝑇 , 𝜏) gravity
given by 𝑓 (𝑇 , 𝜏) = 𝛼𝑇 𝑚(𝑟) + 𝛽𝜏(𝑟) + 𝜙, in which the constants 𝛼, 𝛽 and 𝜙 are all real and arbitrary while the constant 𝑚 is any real
umber such that 𝑚 ≠ 0. It is interesting to mention here that for the choice: 𝛼 = 1, 𝑚 = 1, 𝛽 = 𝜙 = 0, one can retrieve the standard

TEGR framework. In the present work, we shall fix 𝑚 = 2 in all subsequent calculations (i.e., 𝑓 (𝑇 , 𝜏) = 𝛼𝑇 2(𝑟) + 𝛽𝜏(𝑟) +𝜙). The main
otivation behind this choice, are the good cosmological properties and the capacity to explain the effective dark energy sector by

nterpreting it as a quintessence or phantom-like field [15]. All these features studied on a FRW background. Given the versatility of
he selected model, the question naturally arises whether it is possible to describe a well-behaved stellar interior using such 𝑓 (𝑇 , 𝜏)
unctional. Then, inserting all previously defined relations into the field equations (13)–(15), the final expressions of density and
ressure functions can be can written as

𝜌 = 𝑒−2𝜒(𝑟)

4
(

𝛽2 − 3𝛽 + 2
)

𝑟4

[

72𝛼 − 192𝛼𝑒
𝜒(𝑟)
2 + 176𝛼𝑒𝜒(𝑟) − 64𝛼𝑒

3𝜒(𝑟)
2 + 8𝛼𝑒2𝜒(𝑟) − 60𝛼𝛽 + 160𝛼𝛽𝑒

𝜒(𝑟)
2 − 144𝛼𝛽𝑒𝜒(𝑟)

+ 48𝛼𝛽𝑒
3𝜒(𝑟)
2 − 4𝛼𝛽𝑒2𝜒(𝑟) + 2𝑟4𝜙𝑒2𝜒(𝑟) − 𝛽𝑟4𝜙𝑒2𝜒(𝑟) − 4𝛼𝑟

(

𝑒
𝜒(𝑟)
2 − 1

)(

3𝛽
(

𝑒
𝜒(𝑟)
2 − 3

)

+ 8
)

𝜁 ′(𝑟)

+ 4𝛼𝑟2
(

𝑒
𝜒(𝑟)
2 − 1

)(

(𝛽 − 2)𝑒
𝜒(𝑟)
2 + 2

)

𝜁 ′(𝑟)2 − 4𝛼(3𝛽 − 4)𝑟
(

𝑒
𝜒(𝑟)
2 − 1

)2
𝜒 ′(𝑟)

(

𝑟𝜁 ′(𝑟) + 1
)

− 32𝛼𝑟2𝜁 ′′(𝑟)

+ 64𝛼𝑟2𝑒
𝜒(𝑟)
2 𝜁 ′′(𝑟) − 32𝛼𝑟2𝑒𝜒(𝑟)𝜁 ′′(𝑟) + 24𝛼𝛽𝑟2𝜁 ′′(𝑟) − 48𝛼𝛽𝑟2𝑒

𝜒(𝑟)
2 𝜁 ′′(𝑟) + 24𝛼𝛽𝑟2𝑒𝜒(𝑟)𝜁 ′′(𝑟)

]

, (16)

𝑝𝑟 = 𝑒−2𝜒(𝑟)

4
(

𝛽2 − 3𝛽 + 2
)

𝑟4

[

24𝛼 − 64𝛼𝑒
𝜒(𝑟)
2 + 48𝛼𝑒𝜒(𝑟) − 8𝛼𝑒2𝜒(𝑟) − 36𝛼𝛽 + 96𝛼𝛽𝑒

𝜒(𝑟)
2 − 80𝛼𝛽𝑒𝜒(𝑟) + 16𝛼𝛽𝑒

3𝜒(𝑟)
2

+ 4𝛼𝛽𝑒2𝜒(𝑟) − 2𝑟4𝜙𝑒2𝜒(𝑟) + 𝛽𝑟4𝜙𝑒2𝜒(𝑟) − 4𝛼𝑟
(

𝑒
𝜒(𝑟)
2 − 1

)(

−11𝛽 + 3(3𝛽 − 4)𝑒
𝜒(𝑟)
2 + 12

)

𝜁 ′(𝑟) − 4𝛼𝑟2
(

𝑒
𝜒(𝑟)
2 − 1

)

×
(

−4𝛽 + (𝛽 − 2)𝑒
𝜒(𝑟)
2 + 6

)

𝜁 ′(𝑟)2 − 4𝛼𝛽𝑟
(

𝑒
𝜒(𝑟)
2 − 1

)2
𝜒 ′(𝑟)

(

𝑟𝜁 ′(𝑟) + 1
)

+ 8𝛼𝛽𝑟2𝜁 ′′(𝑟) − 16𝛼𝛽𝑟2𝑒
𝜒(𝑟)
2 𝜁 ′′(𝑟)

+ 8𝛼𝛽𝑟2𝑒𝜒(𝑟)𝜁 ′′(𝑟)
]

(17)

𝑝𝑡 =
𝑒−2𝜒(𝑟)

4(𝛽 − 2)(𝛽 − 1)𝑟4
[

−24𝛼 + 64𝛼𝑒
𝜒(𝑟)
2 − 48𝛼𝑒𝜒(𝑟) + 8𝛼𝑒2𝜒(𝑟) + 12𝛼𝛽 − 32𝛼𝛽𝑒

𝜒(𝑟)
2 + 16𝛼𝛽𝑒𝜒(𝑟) + 16𝛼𝛽𝑒

3𝜒(𝑟)
2

− 12𝛼𝛽𝑒2𝜒(𝑟) − 2𝑟4𝜙𝑒2𝜒(𝑟) + 𝛽𝑟4𝜙𝑒2𝜒(𝑟) − 4𝛼𝑟2
(

𝑒
𝜒(𝑟)
2 − 1

)(

−𝛽 + (2𝛽 − 3)𝑒
𝜒(𝑟)
2 + 3

)

𝜁 ′(𝑟)2 + 4𝛼(𝛽 − 1)𝑟3

×
(

𝑒
𝜒(𝑟)
2 − 1

)

𝜁 ′(𝑟)3 − 4𝛼𝑟𝜒 ′(𝑟)
[

(𝛽 − 1)𝑟2
(

2𝑒
𝜒(𝑟)
2 − 3

)

𝜁 ′(𝑟)2 − 𝑟
(

𝑒
𝜒(𝑟)
2 − 1

)(

−8𝛽 + (2𝛽 − 3)𝑒
𝜒(𝑟)
2 + 9

)

𝜁 ′(𝑟)

− (5𝛽 − 6)
(

𝑒
𝜒(𝑟)
2 − 1

)2
]

+24𝛼𝑟2𝜁 ′′(𝑟) − 48𝛼𝑟2𝑒
𝜒(𝑟)
2 𝜁 ′′(𝑟) + 24𝛼𝑟2𝑒𝜒(𝑟)𝜁 ′′(𝑟) − 16𝛼𝛽𝑟2𝜁 ′′(𝑟) + 32𝛼𝛽𝑟2𝑒

𝜒(𝑟)
2 𝜁 ′′(𝑟)

− 16𝛼𝛽𝑟2𝑒𝜒(𝑟)𝜁 ′′(𝑟) + 4𝛼𝑟
(

𝑒
𝜒(𝑟)
2 − 1

)

𝜁 ′(𝑟)
(

2 + 4(𝛽 − 1)𝑒𝜒(𝑟) − 3𝛽 + (𝛽 + 2)𝑒
𝜒(𝑟)
2 + 4(𝛽 − 1)𝑟2𝜁 ′′(𝑟)

)

]

. (18)

The well-known Karmarkar condition [40] facilitates the process of linking two gravitational potential components of metric
unction, yielding the most convenient technique to calculate the metric components if any one of these components is known. For
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T

I

H
s

w
a

embedding class-I solutions, the condition considered by Karmarkar comes from the following necessary and sufficient conditions
that any spherically symmetric space–time (static and non-static) must satisfy in order to be of class-I. Those are:

• A system of symmetric quantities 𝑏𝜇 𝜈 must be established, such that

𝑅𝜇 𝜈 𝛼 𝛽 = 𝜖
(

𝑏𝜇 𝛼 𝑏𝜈 𝛽 − 𝑏𝜇 𝛽 𝑏𝜈 𝛼
)

(Gauss’s equation) , (19)

where 𝜖 = ±1 whenever the normal to the manifold is space-like (+1) or time-like (−1).
• The system 𝑏𝜇𝜈 must satisfy the differential equations

∇𝛼𝑏𝜇 𝜈 − ∇𝜈 𝑏𝜇 𝛼 = 0 (Codazzi’s equation) . (20)

This form of Eq. (20) is implied by Eq. (19) [55].

he required components of Riemanian Tensor for the interior spacetime (7) are given by

𝑅1414 = −1
4
𝑒𝜁 (𝑟)

(

−𝜁 ′(𝑟)𝜒 ′(𝑟) + 𝜁
′2(𝑟) + 2𝜁 ′′(𝑟)

)

, 𝑅2323 = −𝑒−𝜒(𝑟)𝑟2 sin2 𝜃(𝑒𝜒(𝑟) − 1), 𝑅1212 =
1
2
𝑟𝜒 ′,

𝑅3434 = −1
2
𝑟 sin2 𝜃𝜁 ′(𝑟)𝑒𝜁 (𝑟)−𝜒(𝑟). (21)

So, by using the set of Eqs. (21) into Eq. (19) one gets

𝑏14 𝑏22 = 𝑅1343 = 0; 𝑏14 𝑏33 = 𝑅1242 = 0; (22)
𝑏44 𝑏33 = 𝑅4343; 𝑏44 𝑏22 = 𝑅4242; 𝑏11 𝑏33 = 𝑅1313;

𝑏22 𝑏33 = 𝑅2323; 𝑏11 𝑏22 = 𝑅1212; 𝑏44 𝑏11 = 𝑅4141.

The above relations leads to

(

𝑏44
)2 =

(

𝑅4242
)2

𝑅2323
𝑠𝑖𝑛2𝜃,

(

𝑏11
)2 =

(

𝑅1212
)2

𝑅2323
𝑠𝑖𝑛2𝜃,

(

𝑏22
)2 =

𝑅2323

𝑠𝑖𝑛2𝜃
,

(

𝑏33
)2 = 𝑠𝑖𝑛2𝜃 𝑅2323. (23)

Upon replacing (23) into expression (22), one gets:

𝑅1212 𝑅1313 = 𝑅4141 𝑅2323, (24)

subject to 𝑅2323 ≠ 0. It should be noted that Eq. (22) satisfies Codazzi’s equation (20). On the other hand, in the case of a general
non-static spherically symmetric space–time, the second and last equality in (22) become:

𝑏41 𝑏22 = 𝑅1242 and 𝑏44 𝑏11 −
(

𝑏41
)2 = 𝑅4141, (25)

where
(

𝑏41
)2 = 𝑠𝑖𝑛2𝜃

(

𝑅1242
)2 ∕𝑅2323. So, the class-I condition is given by [40]

𝑅4242 𝑅1313 = 𝑅4141 𝑅2323 + 𝑅1242 𝑅1343, (26)

or equivalently

𝑅1414 =
𝑅1313𝑅2424 − 𝑅1242𝑅1343

𝑅2323
; 𝑅2323 ≠ 0. (27)

By the replacement of these non-vanishing Riemanian tensor components into Eq. (27), we get the following differential equation
relating the two metric components:

𝜁 ′(𝑟) +
2𝜁 ′′(𝑟)
𝜁 ′(𝑟)

=
𝑒𝜒(𝑟)𝜒 ′(𝑟)
𝑒𝜒(𝑟) − 1

. (28)

ntegration of the above differential equation (28) results into an expression of 𝑒𝜁 (𝑟) (𝑔𝑡𝑡 metric component) and is given by

𝑒𝜁 (𝑟) =
(

𝐴 + 𝐵 ∫
√

𝑒𝜒(𝑟) − 1 𝑑𝑟
)2

. (29)

ere 𝐴 and 𝐵 are constants of integration.. Based on this idea, many interesting works are available in literature [56] where class-I
olutions have been proposed in various contexts including gravitational decoupling approach.

Let us consider an interesting model of metric component 𝑔𝑟𝑟 (already available in literature [57]) and is given by

𝑒𝜒(𝑟) = 1 + 𝑎𝑟2𝑒𝑛 sin
−1(𝑏𝑟2+𝑐

)

, (30)

here 𝑎, 𝑏, 𝑐 are all arbitrary non-negative constants and 𝑛 ∈ R; 𝑛 ≥ 0. Consequently, the 𝑔𝑡𝑡 metric potential will take the form
s

𝑒𝜁 (𝑟) =

⎛

⎜

⎜

⎜

⎜

𝐵
(

𝑛
√

1 −
(

𝑏𝑟2 + 𝑐
)2 + 2𝑏𝑟2 + 2𝑐

)√

𝑎𝑟2𝑒𝑛 sin−1(𝑏𝑟2+𝑐)

𝑏
(

𝑛2 + 4
)

𝑟
+ 𝐴

⎞

⎟

⎟

⎟

⎟

2

. (31)
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Under all these assumptions along with the metric potentials, the expressions of 𝜌, 𝑝𝑟 and 𝑝𝑡 will turn out to be

𝜌 = 1
4
(

𝛽2 − 3𝛽 + 2
)

𝑟4𝑓 2
1 (𝑟)

[

72𝛼 − 192𝛼𝑓
1
2
1 (𝑟) + 176𝛼𝑓1(𝑟) − 64𝛼𝑓

3
4
1 (𝑟) + 8𝛼𝑓 2

1 (𝑟) − 64𝛼𝑏𝐵
(

𝑛2 + 4
)

𝑟2𝑓3(𝑟)𝑔1(𝑟)

+
128𝛼𝑏𝐵

(

𝑛2 + 4
)

𝑟2𝑓 2
3 (𝑟)

√

𝑓23 (𝑟)

𝑓23 (𝑟)+1

𝑔1(𝑟) − 64𝛼𝑏𝐵
(

𝑛2 + 4
)

𝑟2𝑓3(𝑟)𝑓1(𝑟)𝑔1(𝑟) − 60𝛼𝛽 + 160𝛼𝛽𝑓 1∕2
1 (𝑟) − 144𝛼𝛽𝑓1(𝑟)

+ 48𝛼𝛽𝑓 3∕2
1 (𝑟) − 4𝛼𝛽𝑓 2

1 (𝑟) + 48𝛼𝑏𝛽𝐵
(

𝑛2 + 4
)

𝑟2𝑓3(𝑟)𝑔1(𝑟) −
96𝛼𝑏𝛽𝐵

(

𝑛2 + 4
)

𝑟2𝑓 2
3 (𝑟)

√

𝑓23 (𝑟)
𝑓3(𝑟)+1

𝑔1(𝑟) + 48𝛼𝑏𝛽𝐵
(

𝑛2 + 4
)

× 𝑟2𝑓3(𝑟)𝑔1(𝑟)+
[

8𝛼(3𝛽 − 4)𝑟
(

𝑓2(𝑟) + 𝑏𝑛𝑟2
)

𝑓3(𝑟)
(

𝑓 1∕2
1 (𝑟) − 1

)2 [
𝐴𝑏

(

𝑛2 + 4
)

𝑓2(𝑟)𝑓3(𝑟) + 𝐵𝑓 2
3 (𝑟)

×
[

−𝑛
(

𝑏2𝑟4 + 2𝑏𝑐𝑟2 + 𝑐2 − 1
)

+ 2𝑏𝑛2𝑟2𝑓2(𝑟) + 2
(

5𝑏𝑟2 + 𝑐
)

𝑓2(𝑟)
] ]]

∕
[

(

𝑏2𝑟4 + 2𝑏𝑐𝑟2 + 𝑐2 − 1
)

𝑓1(𝑟)

×
[

𝐵
(

𝑛𝑓2(𝑟) + 2𝑏𝑟2 + 2𝑐
)

𝑓3(𝑟) + 𝐴𝑏
(

𝑛2 + 4
)

𝑟
] ]

+
(

𝛽𝑓 1∕2
1 (𝑟) − 2𝑓 1∕2

1 (𝑟) + 2
)

𝑔2(𝑟) −
(

3𝛽
(

𝑓 1∕2
1 (𝑟) − 3

)

+ 8
)

× 𝑔3(𝑟) + 2𝑟4𝜙𝑓 2
1 (𝑟) − 𝛽𝑟

4𝜙𝑓 2
1 (𝑟)

]

, (32)

𝑝𝑟 = 1
4𝑟2𝑓 2

1 (𝑟)(𝛽
2 − 3𝛽 + 2)

[

24𝛼 − 64𝛼𝑓
1
2
1 (𝑟) + 48𝛼𝑓1(𝑟) − 8𝛼𝑓 2

1 (𝑟) − 36𝛼𝛽 + 96𝛼𝛽𝑓
1
2
1 (𝑟) − 80𝛼𝛽𝑓1(𝑟) + 16𝛼𝛽𝑓

3
2
1 (𝑟)

+ 𝑎𝛼𝛽𝑓 2
1 (𝑟) + 16𝛼𝑏𝛽𝐵

(

𝑛2 + 4
)

𝑟2𝑓3(𝑟)𝑔1(𝑟) −
32𝛼𝑏𝛽𝐵

(

𝑛2 + 4
)

𝑟2𝑓 2
3 (𝑟)

√

𝑓23 (𝑟)
𝑓1(𝑟)

𝑔1(𝑟) + 16𝛼𝑏𝛽𝐵
(

𝑛2 + 4
)

𝑟2𝑓3(𝑟)𝑓1(𝑟)𝑔1(𝑟)

+
[

8𝑟𝛼𝛽𝑓3(𝑟)(𝑓
1
2
1 (𝑟) − 1)2

(

𝑓2(𝑟) + 𝑏𝑛𝑟2
)

[

𝐴𝑏
(

𝑛2 + 4
)

𝑓2(𝑟)𝑓3(𝑟) + 𝐵
[

−𝑛
(

𝑏2𝑟4 + 2𝑏𝑐𝑟2 + 𝑐2 − 1
)

+ 2𝑏𝑛2𝑟2𝑓2(𝑟)

+ 2
(

5𝑏𝑟2 + 𝑐
)

𝑓2(𝑟)
]

𝑓 2
3 (𝑟)

]]

∕
[

(

𝑏2𝑟4 + 2𝑏𝑐𝑟2 + 𝑐2 − 1
)

𝑓1(𝑟)
(

𝐵
(

𝑛𝑓2(𝑟) + 2𝑏𝑟2 + 2𝑐
)

𝑓3(𝑟) + 𝐴𝑏
(

𝑛2 + 4
)

𝑟
)

]

−
(

9𝛽𝑓
1
2
1 (𝑟) − 12𝑓

1
2
1 (𝑟) − 11𝛽 + 12

)

𝑔3(𝑟) −
(

𝛽
(

𝑓
1
2
1 (𝑟) − 4

)

− 2𝑓
1
2
1 (𝑟) + 6

)

𝑔2(𝑟) − 𝛽𝑟4𝜙𝑓 2
1 (𝑟) + 2𝑟4𝜙𝑓 2

1 (𝑟)
]

, (33)

𝑝𝑡 =
1

4𝑟4𝑓 2
1 (𝑟)(𝛽 − 2)(𝛽 − 1)

[

−24𝛼 + 64𝛼𝑓 1∕2
1 (𝑟) − 48𝛼𝑓1(𝑟) + 8𝛼𝑓 2

1 (𝑟) + 48𝛼𝑏𝐵
(

𝑛2 + 4
)

𝑟2𝑓3(𝑟)𝑔1(𝑟)

−
96𝛼𝑏𝐵

(

𝑛2 + 4
)

𝑟2𝑓 2
3 (𝑟)

√

𝑓23 (𝑟)

𝑓23 (𝑟)+1

𝑔1(𝑟) + 48𝛼𝑏𝐵
(

𝑛2 + 4
)

𝑟2𝑓3(𝑟)𝑓1(𝑟)𝑔1(𝑟)

+
32𝛼𝑏3(𝛽 − 1)𝐵3 (𝑛2 + 4

)3 𝑟6𝑓 3
3 (𝑟)

(

𝑓 1∕2
1 (𝑟) − 1

)

(

𝐵
(

𝑛𝑓2(𝑟) + 2𝑏𝑟2 + 2𝑐
)

𝑓3(𝑟) + 𝐴𝑏
(

𝑛2 + 4
)

𝑟
)3

+ 12𝛼𝛽 − 32𝛼𝛽𝑓 1∕2
1 (𝑟) + 16𝛼𝛽𝑓1(𝑟) + 16𝛼𝛽𝑓 3∕2

1 (𝑟) − 12𝛼𝛽

× 𝑓 2
1 (𝑟) − 32𝛼𝑏𝛽𝐵

(

𝑛2 + 4
)

𝑟2𝑓3(𝑟)𝑔1(𝑟) +
64𝛼𝑏𝛽𝐵

(

𝑛2 + 4
)

𝑟2𝑓 2
3 (𝑟)

√

𝑓23 (𝑟)

𝑓23 (𝑟)+1

𝑔1(𝑟) − 32𝛼𝑏𝛽𝐵
(

𝑛2 + 4
)

𝑟2𝑓3(𝑟)𝑓1(𝑟)𝑔1(𝑟)

−
(

𝛽
(

2𝑓 1∕2
1 (𝑟) − 1

)

− 3𝑓 1∕2
1 (𝑟) + 3

)

𝑔2(𝑟) +
8𝛼𝐵𝑟𝑓3(𝑟)

(

𝑓 1∕2
1 (𝑟) − 1

)

𝐵(𝑛𝑓2(𝑟)+2𝑏𝑟2+2𝑐)𝑓3(𝑟)
𝑏(𝑛2+4)𝑟 + 𝐴

[

2 + 4(𝛽 − 1)𝑓1(𝑟) + 8𝑏𝐵(𝛽 − 1)

×
(

𝑛2 + 4
)

𝑟2𝑓3(𝑟)𝑔1(𝑟) − (𝛽 + 2)𝑓 1∕2
1 (𝑟) + 3𝛽

]

−
8𝛼

(

𝑏𝑛𝑟2

𝑓2(𝑟)
+ 1

)

𝑓 2
3 (𝑟)

𝑓1(𝑟)

×
[ 4𝑏2(𝛽 − 1)𝐵2 (𝑛2 + 4

)2 𝑟4𝑓 2
3 (𝑟)

(

2𝑓 1∕2
1 (𝑟) − 3

)

(

𝐵
(

𝑛𝑓2(𝑟) + 2𝑏𝑟2 + 2𝑐
)

𝑓3(𝑟) + 𝐴𝑏
(

𝑛2 + 4
)

𝑟
)2

−
2𝑏𝐵

(

𝑛2 + 4
)

𝑟𝑓 2
3 (𝑟)

(

𝑓 1∕2
1 (𝑟) − 1

)

𝐴𝑏
(

𝑛2 + 4
)

𝑓3(𝑟) + 𝐵
(

𝑛𝑓2(𝑟) + 2𝑏𝑟2 + 2𝑐
)

𝑓 2
3 (𝑟)

×
(

2𝛽
(

𝑓 1∕2
1 (𝑟) − 4

)

− 3𝑓 1∕2
1 (𝑟) + 9

)

− (5𝛽 − 6)
(

𝑓 1∕2
1 (𝑟) − 1

)2 ]
−𝛽𝑟4𝜙𝑓 2

1 (𝑟) + 2𝑟4𝜙𝑓 2
1 (𝑟)

]

, (34)

where some new functions namely 𝑓𝑖(𝑟); 𝑖 = 1,… , 5 and 𝑔𝑖(𝑟); 𝑖 = 1, 2, 3 have been introduced which are basically some complicated
expressions of known terms and are defined as

2 𝑛 sin−1
(

𝑏𝑟2+𝑐
)

√

1 −
(

𝑏𝑟2 + 𝑐
)2, 𝑓 (𝑟) =

√

𝑎𝑟2𝑒𝑛 sin−1(𝑏𝑟2+𝑐), (35)
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𝑓4(𝑟) =
√

−
(

𝑏𝑅2 + 𝑐 − 1
) (

𝑏𝑅2 + 𝑐 + 1
)

, 𝑓5(𝑟) =
√

−𝑏2𝑅4 − 2𝑏𝑐𝑅2 − 𝑐2 + 1, (36)

𝑔1(𝑟) =

(

𝐵
(

𝑛
(

𝑏2𝑟4 − 𝑐2 + 1
)

+ 2
(

𝑐 − 𝑏𝑟2
)

𝑓2(𝑟)
)

𝑓3(𝑟) + 𝐴𝑏
(

𝑛2 + 4
)

𝑟
(

𝑓2(𝑟) + 𝑏𝑛𝑟2
))

𝑓2(𝑟)
(

𝐵
(

𝑛𝑓2(𝑟) + 2𝑏𝑟2 + 2𝑐
)

𝑓3(𝑟) + 𝐴𝑏
(

𝑛2 + 4
)

𝑟
)2

, (37)

𝑔2(𝑟) =
16𝛼𝑏2𝐵2 (𝑛2 + 4

)2 𝑟4𝑓 2
3 (𝑟)

(

𝑓 1∕2
1 (𝑟) − 1

)

(

𝐵
(

𝑛𝑓2(𝑟) + 2𝑏𝑟2 + 2𝑐
)

𝑓3(𝑟) + 𝐴𝑏
(

𝑛2 + 4
)

𝑟
)2
, (38)

𝑔3(𝑟) =
8𝛼𝑏𝐵

(

𝑛2 + 4
)

𝑟𝑓 2
3 (𝑟)

(

𝑓 1∕2
1 (𝑟) − 1

)

𝐴𝑏
(

𝑛2 + 4
)

𝑓3(𝑟) + 𝐵𝑓3(𝑟)(2𝑐 + 2𝑏𝑟2 + 𝑛𝑓2(𝑟))
. (39)

3. Matching of interior and exterior space–time geometries: Fixing the values of arbitrary constants

To describe a well established stellar interior, the matching procedure entails a crucial aspect. The main points of this grasp
is to guarantee the continuity of the first and second fundamental forms across the junction interface defined by 𝛴 ∶ 𝑟 = 𝑅. The
inner manifold −, in this case described by the pair (30)–(31), and the outer one + induce on 𝛴 a metric tensor 𝑔−𝜇𝜈 and 𝑔+𝜇𝜈
respectively, describing the intrinsic geometric of the interface 𝛴. Then, the first fundamental form leads to

[𝑑𝑠2]𝛴 = 0, (40)

r equivalently

𝑒𝜒−|𝑟=𝑅 = 𝑒𝜒+|𝑟=𝑅 and 𝑒𝜁−|𝑟=𝑅 = 𝑒𝜁+|𝑟=𝑅. (41)

s we are dealing with a model without electric charges and cosmological constant contributions. Then, the exterior manifold +

s described by the well-known vacuum Schwarzschild spacetime

𝑑𝑠2 =
(

1 −
2𝑀Sch
𝑅

)

𝑑𝑡2 −
(

1 −
2𝑀Sch
𝑅

)−1
𝑑𝑟2 − 𝑟2

(

𝑑𝜃2 + sin2 𝜃𝑑𝜙2) . (42)

So, putting together Eqs. (30)–(31), (41) and (42) one gets

1 −
2𝑀Sch
𝑅

=

⎛

⎜

⎜

⎜

⎜

⎝

𝐵
(

𝑛
√

1 −
(

𝑏𝑅2 + 𝑐
)2 + 2𝑏𝑅2 + 2𝑐

)√

𝑎𝑅2𝑒𝑛 sin−1(𝑏𝑅2+𝑐)

𝑏
(

𝑛2 + 4
)

𝑅
+ 𝐴

⎞

⎟

⎟

⎟

⎟

⎠

2

, (43)

(

1 −
2𝑀Sch
𝑅

)−1
= 𝑎𝑅2𝑒𝑛 sin

−1(𝑏𝑅2+𝑐
)

+ 1, (44)

here at the junction interface 𝛴 the Schwarzschild mass 𝑀Sch coincides with the total mass 𝑚(𝑅) =𝑀 contained by the fluid sphere.
ow, the second fundamental form compromises the continuity of the extrinsic curvature tensor 𝐾𝜇𝜈 across 𝛴. The continuity of

he radial component of the extrinsic curvature tensor ı.e, 𝐾−
𝑟𝑟 = 𝐾+

𝑟𝑟 assures a vanishing radial pressure at 𝛴, that is

𝑝𝑟(𝑅) = 0. (45)

his fact is very important in the construction of compact objects, since (45) guarantees that the matter distribution contained by
he fluid sphere in confined within the region 0 ≤ 𝑟 ≤ 𝑅, determining in this way the object size ı.e, its radius 𝑅. By solving the
ystem of equations (43)–(44), we get the values of arbitrary constants 𝑎 and 𝐴 as follows

𝑎 = −2𝑀𝑒−𝑛 sin
−1(𝑏𝑅2+𝑐

)

𝑅2(2𝑀 − 𝑅)
, (46)

𝐴 =
𝑏𝑅

(

−2𝐵𝑅𝑓3(𝑅) + 𝑛2
√

1 − 2𝑀
𝑅 + 4

√

1 − 2𝑀
𝑅

)

− 𝐵
(

𝑛𝑓4(𝑅) + 2𝑐
)

𝑓3(𝑅)

𝑏
(

𝑛2 + 4
)

𝑅
, (47)

nd from Eqs. (33) and (45) one obtains

𝛼 = −
(𝛽 − 2)𝑅6𝜙(𝑅 − 2𝑀)

√

1 −
(

𝑏𝑅2 + 𝑐
)2

𝑔(𝑅)
, (48)

where

𝑔(𝑅) = 16
[

2𝛽𝑀3

((

3 − 5
√

𝑅
𝑅 − 2𝑀

)

√

−𝑏2𝑅4 − 2𝑏𝑐𝑅2 − 𝑐2 + 1 + 4𝑏𝑛𝑅2
√

𝑅
𝑅 − 2𝑀

)

−𝑀2𝑅

×
[ √

−𝑏2𝑅4 − 2𝑏𝑐𝑅2 − 𝑐2 + 1

(

𝛽

(

12
√

𝑀
√

𝑀 − 33
√

𝑅 + 23

)

+ 8
√

𝑅 − 2

)
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Table 1
The values of constant parameters for the constructed model by using different values of 𝑅, 𝑛 and 𝐵, along with 𝛽 = −25, 𝑏 = 0.001 [km−2], 𝑐 = 0.001 and
= 2.036 [km−2].
Star Observed mass 𝑀⊙ Radius [km] 𝑛 𝑎 [km−2] 𝐴 𝐵 [km−1] 𝛼 𝑝𝑟𝑐

𝜌𝑐
< 1

PSR J1614–2230 1.97 12.182 1.5 0.00257238 0.444817 0.0233421 −2.17139 ∗ 10−30 0.138213
LMXB 4U 1608–52 1.74 11.751 1.8 0.00237023 0.475168 0.0231551 −2.22733 ∗ 10−30 0.114631
Cen X-3 1.49 11.224 2.1 0.00219616 0.515361 0.0229539 −2.29844 ∗ 10−30 0.0387793
EXO 1785–248 1.3 10.775 2.2 0.00211597 0.544558 0.0227945 −2.36296 ∗ 10−30 0.0402779
SMC X - 1 1.04 10.067 2.5 0.0020195 0.585176 0.0225762 −2.46315 ∗ 10−30 0.048509

+ 8𝑏𝛽𝑛𝑅2

(
√

𝑀
𝑅

√

𝑀
𝑅 − 2𝑀

+
√

𝑅
𝑅 − 2𝑀

)

]

+𝑀
[

𝑅2
√

−𝑏2𝑅4 − 2𝑏𝑐𝑅2 − 𝑐2 + 1
[

𝛽
[

10
√

𝑀
𝑅

√

𝑀
𝑅 − 2𝑀

− 28
√

𝑅
𝑅 − 2𝑀

+ 23
]

+12
√

𝑅
𝑅 − 2𝑀

− 8
]

+2𝑏𝛽𝑛𝑅4

(

4
√

𝑀
𝑅

√

𝑀
𝑅 − 2𝑀

+
√

𝑅
𝑅 − 2𝑀

)

]

− 𝑅3
[ √

−𝑏2𝑅4 − 2𝑏𝑐𝑅2 − 𝑐2 + 1

(

𝛽

(

2
√

𝑀
𝑅

√

𝑀
𝑅 − 2𝑀

− 7
√

𝑅
𝑅 − 2𝑀

+ 7

)

+ 4

(
√

𝑅
𝑅 − 2𝑀

− 1

))

+ 2𝑏𝛽𝑛𝑅2
√

𝑀
𝑅

√

𝑀
𝑅 − 2𝑀

]]

.

It is worth mentioning that mass of the compact structure, also can be obtained by using the continuity of the angular components of
the extrinsic curvature, that is, the continuity of 𝐾𝜃𝜃 and 𝐾𝜙𝜙. The conditions (46)–(48) are the necessary and sufficient conditions
to determine some of the constant parameters characterizing the toy model. In Table 1 are placed the numerical values. These data
was obtained by fixing 𝑛 and 𝐵 as free parameters. In addition we have taken mass 𝑀 of some relativistic strange star candidates.

. Some physical aspects of strange star model in 𝒇 (𝑻 , 𝝉) gravity

In this section, we shall describe some physical features of the strange stars like density and pressures, EoS parameters, energy
onditions, TOV equation, causality condition, adiabatic index, redshift and mass function etc. on the basis of their graphical
ehavior. We shall determine the stability and significance of our proposed model.

.1. Metric components and state variables

It is well-known that any model representing a realistic compact structure should satisfy some general requirements in order to
e physically and mathematically feasible. These formalities concern a well defined geometric structure for all 𝑟 ∈ [0, 𝑅] and well
ehaved thermodynamic variables {𝜌, 𝑝𝑟, 𝑝𝑡} everywhere inside the collapsed configuration. To analyze the former, one needs to
heck the trend of the metric potentials (30) and (31) within the interval [0, 𝑅] ı.e, from the center to the surface of the compact
tructure. As it is depicted in the left panel of Fig. 1, the inner geometry described by the metric potentials (30)–(31) is free from
hysical and mathematical singularities everywhere within the object. Furthermore, the radial metric potential and the temporal
ne ı.e, 𝑒𝜒(𝑟)|𝑟=0 = 1 and 𝑒𝜁 (𝑟)|𝑟=0 > 0 evaluated at the center of the star provide the correct results, what is more at the junction
nterface 𝑟 = 𝑅 both coincide, that is, 𝑒−𝜒(𝑟) = 𝑒𝜁 (𝑟). This shows that the matching condition process is well established.

Regarding the thermodynamic variables, the right panel of Fig. 1 displays the trend of the density 𝜌 within the compact object. It
s observed that this state parameter is positive defined and monotonically decreasing function with increasing radial coordinate 𝑟.
his means that 𝜌 has its maximum value attained at 𝑟 = 0. As can be seen, as the mass of the object decreases the central density also
ecreases in magnitude. Moreover, the upper panels in Fig. 2 shown the radial pressure 𝑝𝑟 (left panel) and the transverse pressure 𝑝𝑡
right panel), where it is clear that at 𝑟 = 0 both quantities coincide and as one approaches the surface of the object they separate.
his mismatch indicates that the matter distribution is anisotropic in nature. The signal that these local anisotropies are favorable in
he construction of stellar objects (at least from the theoretical point of view) is: 𝑝𝑡 > 𝑝𝑟, or equivalently 𝛥 = 𝑝𝑡 − 𝑝𝑟 > 0. This brings

as a consequence two relevant facts, namely: (i) a positive anisotropy factor allows obtaining more compact stellar structures [58],
(ii) the stability and hydrostatic equilibrium are substantially improved (for more details see the following sections), since 𝛥 > 0
introduces a repulsive gradient, which helps counteract the gravitational gradient. In the lower left panel of Fig. 2 it is appreciated
that the density ( 𝑑𝜌𝑑𝑟 = 0) and pressures gradients ( 𝑑𝑝𝑟𝑑𝑟 = 0 and 𝑑𝑝𝑡

𝑑𝑟 = 0) are negatives. This corroborates the monotonically decreasing
behavior of the state parameters {𝜌, 𝑝𝑟, 𝑝𝑡}. Besides, the lower right panel in Fig. 2 shows the trend of the anisotropy factor. As can
be observed, at 𝑟 = 0 one has 𝛥 = 0 as a consequence of the equality 𝑝𝑟 = 𝑝𝑡 at the center of the star, while 𝛥 > 0 at every point
towards the surface. In Table 2 are displayed the central density, the surface density and the central pressure. Since the nuclear
density saturation is of order of 1014 [g∕cm3] and in Table 2 it is appreciated that both the central and surface density are beyond
this limit, it is evident that within the framework of 𝑓 (𝑇 , 𝜏) gravity theory, one can build more dense and compact object than in
the GR picture.
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Table 2
The numerical values of the central density, surface density, central pressure, adiabatic index and critical adiabatic index, by using different values of 𝑛 and 𝐵,
along with 𝛽 = −25, 𝑏 = 0.001 km−2, 𝑐 = 0.001 and 𝜙 = 2.036 [km−2].

Star 𝜌(0) ∗ 1015 [g∕cm3] 𝜌(𝑅) ∗ 1015 [g∕cm3] 𝑝𝑟(0) ∗ 1035 [dyne∕cm2] 𝛤𝑟 𝛤crit

PSR J1416–2230 7.674997 4.496497 9.406281 1.933476 1.548881
4 U 1608–52 6.795468 4.468226 6.901296 2.153520 1.530698
Cen X-3 6.077967 4.443117 4.857780 2.446311 1.510277
EXO 1785–248 5.598387 4.427251 3.491886 2.535048 1.494147
SMC X - 1 5.147164 4.409376 2.206757 2.248983 1.471032

Fig. 1. Left Panel: The trend of metric potentials versus radial coordinate 𝑟. Right Panel: The behavior of the density against the radial coordinate 𝑟. These
plots were obtained by using the numerical data given in Table 1.

Fig. 2. Upper row: The radial pressure (left panel) and the tangential pressure (right panel), against the radial coordinate 𝑟. Lower row: The thermodynamic
gradients (left panel) and the anisotropy factor versus the radial coordinate 𝑟 (right panel). To build these plots the numerical data placed in Table 1 was
employed.

To assure a well established matter distribution within the stellar interior, further analysis is required.1 This analysis compromises
the fulfillment of so-called Zel’dovich condition 𝑝𝑐𝑟

𝜌𝑐𝑟
≤ 1 [59] and the energy conditions [60]: The weak, null, dominant and strong

1 Although the energy condition satisfaction only constitutes an heuristic analysis.
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Fig. 3. The trend of EoS parameters versus radial coordinate 𝑟.

energy conditions. Those are given by the following inequalities

WEC ∶ 𝑇𝜇𝜈 𝑙𝜇𝑙𝜈 ≥ 0 or 𝜌 ≥ 0, 𝜌 + 𝑝𝑖 ≥ 0 (49)

NEC ∶ 𝑇𝜇𝜈 𝑡𝜇𝑡𝜈 ≥ 0 or 𝜌 + 𝑝𝑖 ≥ 0 (50)

DEC ∶ 𝑇𝜇𝜈 𝑙𝜇𝑙𝜈 ≥ 0 or 𝜌 ≥ |𝑝𝑖| (51)
where 𝑇𝜇𝜈 𝑙

𝜇 ∈ nonspace-like vector

SEC ∶ 𝑇𝜇𝜈 𝑙𝜇𝑙𝜈 −
1
2
𝑇 𝜆𝜆 𝑙

𝜎 𝑙𝜎 ≥ 0 or 𝜌 +
∑

𝑖
𝑝𝑖 ≥ 0 (52)

TEC ∶ 𝜌 − 𝑝𝑟 − 2𝑝𝑡 ≥ 0. (53)

where 𝑖 ≡ (𝑟𝑎𝑑𝑖𝑎𝑙 𝑟, 𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 𝑡), 𝑙𝜇 and 𝑡𝜇 are time-like vector and null vector respectively. The Zel’dovich condition tells us that
the speed of sound of the pressure waves cannot exceed the speed of light (this fact is related with the so-called causality condition,
see below for further details). To check this feature, we have plotted the equation of state parameters (EoS) along the radial 𝑤𝑟 and
tangential 𝑤𝑡 directions, respectively. These EoS parameters are defined by

𝑤𝑟 =
𝑝𝑟
𝜌
, (54)

𝑤𝑡 =
𝑝𝑡
𝜌
. (55)

The graphical illustration of these conditions is provided in Fig. 3 which indicates that these parameters are compatible with
the inequalities: 𝑤𝑟 > 0 and 0 < 𝑤𝑡 < 1 against the radial coordinate. Moreover, in the last column of Table 1 we have placed
the numerical values for each case. This information corroborates the satisfaction of the Zeldovich condition. Regarding the energy
conditions, one needs to taking into account that the matter distribution can be composed of a large number of fields. Therefore,
it could be very complex to describe exactly the shape of the energy–momentum tensor. Thus, in order to have some impressions
on the energy–momentum tensor behavior the above inequalities must be satisfied simultaneously. At this point it is worth noting
that the energy conditions go beyond the idea that the energy must be positive defined. These conditions have a clear physical and
geometric interpretation [60]. For example, the WEC implies that the energy density measured by an observer crossing a timelike
curve is never negative. The SEC purports that the trace of the tidal tensor measured by the corresponding observers is always
non-negative and finally DEC stand for mass–energy can never be observed to be flowing faster than light. Of course, the matter
distribution driven the stellar interior of the present toy model, satisfies all these physical and geometric interpretations. It is worthy
to mention here that since all quantities 𝜌, 𝑝𝑟 and 𝑝𝑡 exhibit positive behavior (as provided in Figs. 1 and 2), therefore all conditions
will automatically satisfy except DEC and TEC [61]. For this reason, we check the validity of DEC and TEC only as shown in Fig. 4
which indicates that these inequalities are everywhere satisfied.

4.2. Stability via TOV equation

The equilibrium of a stellar configuration can be analyzed by the using an adapted Tolman–Oppenheimer–Volkoff (TOV)
equation [62,63]. For the present stellar structure, the equilibrium depends upon three gradients which are 𝐹𝑎, the anisotropic
gradient which is due to the presence of anisotropy in the fluid distribution, 𝐹ℎ termed as hydrostatic gradient and 𝐹𝑔 , the
gravitational gradient. Actually, both 𝐹𝑎 and 𝐹ℎ gradients have a combine balancing effect equal to 𝐹𝑔 . In case of 𝑓 (𝑇 , 𝜏) gravity
there is an extra force 𝐹𝑒. Due to this balancing effect, the collapse of compact objects to a singularity point, during phenomena of
gravitational collapse, may be avoided. So the presence of anisotropy within the stellar formation strengthens the equilibrium of
stellar system. Mathematically, the adapted TOV equation, defining the equilibrium of the system, is given as

𝑑𝑝𝑟
𝑑𝑟

+
𝜁 ′(𝜌 + 𝑝𝑟)

2
−

2(𝑝𝑡 − 𝑝𝑟)
𝑟

+ −1
𝛽

(

𝛽𝜌′

4
−
𝛽𝑝′𝑟
4

− 𝛽𝑝′𝑡

)

= 0, 𝐹𝑔 + 𝐹ℎ + 𝐹𝑎 + 𝐹𝑒 = 0,
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Fig. 4. The validity of energy conditions versus radial coordinate 𝑟. This plot was obtained by using the numerical displayed in Table 1.

Fig. 5. The graphical illustration of the anisotropic 𝐹𝑎, gravitational 𝐹𝑔 and hydrostatic 𝐹ℎ gradients versus radial coordinate 𝑟. These curves were built by using
the values of constant parameters given in Table 1.

where

𝐹𝑔 = −
𝜁 ′(𝜌 + 𝑝𝑟)

2
, 𝐹ℎ = −

𝑑𝑝𝑟
𝑑𝑟

, 𝐹𝑎 =
2(𝑝𝑡 − 𝑝𝑟)

𝑟
, 𝐹𝑒 =

−1
4𝜋 + 𝛽

2

(

𝛽𝜌′

4
−
𝛽𝑝′𝑟
4

− 𝛽𝑝′𝑡

)

. (56)

For the present stellar structures, it is seen from Fig. 5 that all these forces almost balance each other’s effect by taking either
small positive or negative values which authenticates the equilibrium of the constructed stellar system in this modified gravity.

4.3. Causality conditions

Here we shall talk about the consistency of causality conditions for the constructed stellar structure. It is argued that physically
permissible and viable solution of dynamical equations for anisotropic fluid necessarily satisfy the causality conditions. Causality
conditions are obtained by imposing some limitations on the radial and tangential sound velocities denoted by 𝑣2𝑟 and 𝑣2𝑡 , respectively
and is defined as 0 <∣ 𝑣2𝑗 ∣< 1; 𝑗 = 𝑟, 𝑡 (i.e., they should be less than the speed of light which is unity). These radial and transverse
sound speeds can be defined as follows

𝑣2𝑟 =
𝑑𝑝𝑟
𝑑𝜌

, 𝑣2𝑡 =
𝑑𝑝𝑡
𝑑𝜌

.

It can be easily verified from their graphical illustration which is provided in Fig. 6 (left and middle panels) that both of the speeds
fulfill the above requirement. It is interesting to mention here that Abreu et al. [64] discussed the stability of self-gravitating stellar
sphere of anisotropic fluid by pointing out the stable region. This condition suggest that in potentially stable region, the radial speed
𝑣𝑟 is greater than the transverse speed 𝑣𝑡, which means that the difference of two speeds must fulfill the inequality |𝑣2𝑡 − 𝑣

2
𝑟 | ≤ 1.

The present stellar structure is also investigated under the light of this condition which is provided in Fig. 6 (right panel). It can be
easily checked that this condition is also satisfied for our presented models.

5. Mass function, compactness factor, redshift, adiabatic index

Here we shall discuss some interesting parameters like mass function, compactness and redshift which confirm the physical
existence of compact objects. The total mass is defined as follows

𝑚(𝑅) = 4𝜋
𝑅
𝑥2𝜌(𝑥)𝑑𝑥, 𝑢(𝑟) =

𝑚(𝑅)
, 𝑧𝑠 = (1 − 2𝑢)−

1
2 − 1.
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Fig. 6. Left panel and Middle panel: The squared radial and transverse sound speeds of the pressure waves versus the radial coordinate 𝑟. Right panel: The
Abreu’s stability criterion against the radial coordinate 𝑟. These plots were obtained by using the numerical data provided in Table 1.

Fig. 7. Left panel: The compactness factor profile versus the radial coordinate 𝑟. Middle panel: The trend of the redshift against the radial coordinate 𝑟. Right
panel: The mass function versus the radial coordinate 𝑟. The behavior of these quantities along the radial direction were constructed by employing the numerical
data placed in Table 1.

However, one can also define the mass function 𝑚(𝑅) in a more convenient way by using the metric component 𝑒𝜒(𝑟) as follows

𝑚(𝑅) = 𝑅
2
[1 − 𝑒−𝜒(𝑅)].

It is mentioning that for a spherically symmetric and static configuration, the maximum limit of compactness (the ratio of mass to
radius) must lie within the range 𝑢 = 𝑚

𝑟 <
8
9 (in the unit system 𝑐 = 𝐺 = 1). From the left panel of Fig. 7, it can be easily checked

that the compactness parameter 𝑢 is compatible with this defined range. It is argued that the existence of positive anisotropy limits
the value of redshift as 𝑍𝑠 < 5, called Bohmer and Harko condition. From the middle graph of Fig. 7, it can be seen that the
maximum redshift value is 0.20 and hence in accordance with this condition. Fig. 7 (right panel) shows the graphical illustration
of mass function of the considered strange stars in this gravity. It is seen that mass function exhibits positive, increasing behavior
and regular at the center and hence compatible with the original masses of the stars.

5.1. Adiabatic index and ratio of pressures

In this part, we shall discuss the behavior of adiabatic index and ratio of pressures to density graphically. Adiabatic index is an
important property which ensures the stability of an anisotropic strange star configuration. It is argued that for physically stable
model of compact star, the radial adiabatic index should be compatible with the range 𝛤𝑟 >

4
3 . For a compact star model, the radial

adiabatic index is defined as

𝛤𝑟 =
(

1 +
𝜌
𝑝𝑟

)

𝑑𝑝𝑟
𝑑𝜌

.

Its graphical behavior is provided in the right part of Fig. 8 which indicates that the presented model is consistent with this limit and
hence represents a promising model of compact star within this modified gravity. Nevertheless, to assure a stable model following the
relativistic adiabatic index point of view, further analysis is required. This is so because relativistic corrections to the adiabatic index
𝛤 could introduce some instabilities inside the star [65,66]. To overcome this issue in [67] was proposed a more strict condition on
the adiabatic index 𝛤 . This condition claim the existence of a critical value for the adiabatic index 𝛤crit. To have a stable structure,
this critical value depends on the amplitude of the Lagrangian displacement from equilibrium and the compactness factor 𝑢 ≡𝑀∕𝑅.
The amplitude of the Lagrangian displacement is characterized by the parameter 𝜁 , so taking particular a form of this parameter
the critical relativistic adiabatic index is given by

𝛤crit =
4
3
+ 19

21
𝑢, (57)

where the stability condition becomes 𝛤 ≥ 𝛤crit. As can be appreciated in Table 2 (fifth and sixth columns) the condition 𝛤 ≥ 𝛤crit
is always satisfied. Therefore, we can conclude that the present toy model is stable under local radial perturbations introduced by
the relativistic corrections. Furthermore, we also investigate the behavior of ratio 𝑝𝑟+2𝑝𝑡 graphically (see left panel of Fig. 8). It is
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Fig. 8. Left panel: The behavior of ratio 𝑝𝑟+2𝑝𝑡
𝜌

against the redial coordinate 𝑟. Right panel: The adiabatic index trend versus radial coordinate 𝑟. To obtain
these plots different values of the constants parameters exhibited in Table 1 were used.

argued that for physically viable compact star configuration, this ratio should exhibit positive decreasing behavior from center to
outer boundary with maximum value at its center. In the considered gravity, this behavior of ratio can be easily verified from the
left part of Fig. 8.

6. Conclusions

The construction of models representing the anisotropic compact stars using different candidates of modified gravity approach
has became a center of research in modern cosmology. In literature, much work has been done on this subject and different
significant models have been developed. In this work, we have studied the construction of compact structures exhibiting the
static and spherically symmetric properties with matter distribution as anisotropic fluid in 𝑓 (𝑇 , 𝜏) gravitational framework. In
literature [50,51], this topic has been discussed but the distinct feature of this study is the use of non-diagonal components for
the formulation of basic structure as well as dynamical equations. For having viable solutions, one need to close the system of field
equations. Since the present configuration involved 6 unknowns in set of 3 differential equations, therefore we have taken three
valid assumptions into account. The use of Karmarkar condition for a spherically symmetric space–time has been declared as an
easy and simple tool to obtain the solutions of field equations. By using the relationship suggested by Karmarkar condition, we
have found both metric components and here we have also fixed the generic function 𝑓 (𝑇 , 𝜏) by considering a well-known model
available in literature. In the following, we shall summarize the results obtained by exploring different physical features of the
proposed models.

• It is seen that the presented structure is singularity free as the metric components showed regular at the center, positive and
increasing behavior;

• The density and pressure functions exhibited positive decreasing behavior with maximum values at the center and hence
referred to significant strange star structures;

• The density and pressure gradients have showed the appropriate negative decreasing behavior as suggested for the existence
of such structures. Also, the Zeldovich’s condition has been analyzed and found to be compatible with the inequality 𝑝𝑐𝑟

𝜌𝑐𝑟
< 1;

• It has been verified that the expression of energy conditions remain positive throughout the stellar configurations and hence
suggesting valid star structures;

• As the presence of anisotropy throughout the matter distribution of star supports the anisotropic nature of the stars. In this
work, the anisotropy parameter exhibited non-vanishing behavior, i.e., 𝛥 > 0 and hence authenticated physically stable and
promising strange star structures in 𝑓 (𝑇 , 𝜏) gravity;

• The equilibrium and stability of the presented model has been confirmed graphically. It has been seen that three forces 𝐹𝑎,
𝐹ℎ and 𝐹𝑔 balanced each other’s effect and hence leaving the stellar configuration in an equilibrium state. Also, stability of
the proposed stellar systems have been discussed by the analysis of causality conditions and Abreu’s condition. It has been
verified that our models are consistent with the limit of stability: |𝑣2𝑠𝑡 − 𝑣2𝑠𝑟| < 1;

• The radial and tangential EoS parameters showed compatibility with the suggested inequalities: 𝑤𝑡 > 0 and 0 < 𝑤𝑟 < 1;
• It has been seen that the redshift, compactness and mass functions stayed positive and definite thorough this anisotropic matter

distribution. It has been noticed that these parameters are in accordance with the some suggested limits for such configurations
like Buchdahl and Bohmer and Harko condition;

• The adiabatic index exhibited positive increasing behavior and also satisfied the constraint 𝛤𝑟 > 4∕3. Thus indicated the
existence of stable stellar structures in this gravity. The ratio of pressures and density has also been explored graphically
indicating positive but decreasing behavior with maximum value at the center which is regarded as an essential condition for
a realistic compact star.
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Table 3
Summary of the achieved results using observed values of mass and radius of compact stars.

Expression Result Expression Result

𝜌 > 0, satisfied 𝑝𝑟 > 0, satisfied
𝑝𝑡 > 0, satisfied 𝑝𝑟𝑐

𝜌𝑐
≤ 1

𝛥 > 0, satisfied 𝑑𝜌
𝑑𝑟

< 0, satisfied
𝑑𝑝𝑟
𝑑𝑟

< 0, satisfied 𝑑𝑝𝑡
𝑑𝑟

< 0, satisfied
𝐹𝑎, 𝐹ℎ, 𝐹𝑔 and 𝐹𝑒 balanced 𝜌 + 𝑝𝑟 > 0, satisfied
𝜌 + 𝑝𝑡 > 0, satisfied 𝜌 − 𝑝𝑟 > 0, satisfied
𝜌 − 𝑝𝑡 > 0, satisfied 𝜌 + 𝑝𝑟 + 2𝑝𝑡 > 0, satisfied
𝑚(𝑟) > 0, satisfied 𝑢(𝑟) 0 < 𝑢(𝑟) < 8

9
, satisfied

𝑧𝑠 0 < 𝑧𝑠 < 5, satisfied 𝑤𝑟 0 < 𝑤𝑟 < 1, satisfied
𝑤𝑡 0 < 𝑤𝑟 < 1, satisfied 𝑣2𝑟 0 < 𝑣2𝑟 < 1, satisfied
𝑣2𝑡 0 < 𝑣2𝑟 < 1, satisfied 𝑣2𝑡 − 𝑣

2
𝑟 −1 <∣ 𝑣2𝑡 − 𝑣

2
𝑟 ∣< 1, satisfied

𝛤𝑟 > 4
3
, satisfied

These results are also summarized in the form of Table 3. Finally, from our discussion, we can conclude that our proposed strange
stellar models fulfill all the necessary requirements of a physically acceptable and admissible such structure. The chosen 𝑓 (𝑇 , 𝜏)

odel was firstly proposed by Harko et al. in a study [15] where they investigated the cosmological implications of this model by
ixing both model parameters as 𝛼 < 0 and 𝛽 < 0 and found viable results. In the present paper, we have explored the possibility of
xistence of compact stars in this gravitational framework by picking the same model along with similar negative choices of model
arameters. It is found that the similar choices of free parameters also favor the existence of physically interesting stellar objects in
his theory. It would be interesting to study other compact star models in the realm of 𝑓 (𝑇 , 𝜏) gravity and analyze their physically

significance.
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